Diferentes níveis proteicos no cultivo superintensivo de juvenis de camarões-brancos Litopenaeus vannamei em sistema de bioflocos durante período de berçário secundário

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2023.49.e851

Palavras-chave:

Sistema antioxidante, Fator de conversão alimentar, Custos de alimentação, Crescimento

Resumo

A determinação dos níveis de proteína bruta em dietas de organismos aquáticos permite maximizar o crescimento, reduzir os custos com alimentação e melhorar a qualidade da água. Foi realizado o cultivo de Litopenaeus vannamei em sistema superintensivo com bioflocos utilizando cinco dietas com diferentes níveis de proteína bruta (PB)
(320 g·kg-1 PB, 360 g·kg-1 PB, 400 g·kg-1 PB, 440 g·kg-1 PB e 480 g·kg-1 PB). Cada dieta foi utilizada em quadruplicata. O período experimental durou 35 dias, e os camarões (0,59 ± 0,001 g) foram estocados na densidade de 600 PL·m-3, utilizando 20 unidades experimentais (50 L de volume útil). Não houve diferenças significativas na sobrevivência dos animais entre os tratamentos (p > 0,05). Os animais alimentados com 480 g·kg-1 apresentaram maior peso final e taxa de crescimento específico quando comparados aos tratamentos alimentados com 320 g·kg-1 (p < 0,05). Além disso, alimentar camarões com dietas com 32% de PB resultou em redução na utilização de ração e retenção de nutrientes, aumentando assim os custos com ração. No geral, de acordo com a análise broken line, 38% de PB seria o ideal, e de acordo com a regressão quadrática 46% de PB resultaria no melhor crescimento de L. vannamei nessa fase de crescimento.

Referências

Almeida, M.S.; Carrijo-Mauad, J.R.; Gimenes, R.M.T.; Gaona, C.A.P.; Furtado, P.S.; Poersch, L.H.; Wasielesky, W.; Fóes, G.K. 2021. Bioeconomic analysis of the production of marine shrimp in greenhouses using the biofloc technology system. Aquaculture International, 29: 723-741. https://doi.org/10.1007/s10499-021-00653-1

Amado, L.L.; Garcia, M.L.; Ramos, P.B.; Freitas, R.F.; Zafalon, B.; Ferreira, J.L.R.; Yunes, J.S.; Monserrat, J.M. 2009. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: Application to evaluate microcystins toxicity. Science of the Total Environment, 407(6): 2115-2123. https://doi.org/10.1016/j.scitotenv.2008.11.038

American Public Health Association (APHA). 2005. Standard Methods for the Examination of Water and Wastewater. 21th ed. Gaithersburg: Association of Official Analytical chemists.

Aminot, A.; Chaussepied, M. 1983. Manuel des analyses chimiques en milieu marin. France: Centre National pour l’exploitation des océans.

Anand, P.S.S.; Aravind, R.; Biju, I.F.; Balasubramanian, C.P.; Antony, J.; Saranya, C.; Christina, L.; Rajamanickam, S.; Panigrahi, A.; Ambasankar, K.; Vijayan, K.K. 2021. Nursery rearing of Indian white shrimp, Penaeus indicus: Optimization of dietary protein levels and stocking densities under different management regimes. Aquaculture, 542, 736807. https://doi.org/10.1016/j.aquaculture.2021.736807

Ashour, M.; Mabrouk, M.M.; Abo-Taleb, H.A.; Sharawy, Z.Z.; Ayoub, H.F.; Van Doan, H.; Davies, S.J.; El-Haroun, E.; Goda, A.M.S.A. 2021. A liquid seaweed extract (TAM®) improves aqueous rearing environment, diversity of zooplankton community, whilst enhancing growth and immune response of Nile tilapia, Oreochromis niloticus, challenged by Aeromonas hydrophila. Aquaculture, 543: 736915. https://doi.org/10.1016/j.aquaculture.2021.736915

Association of Official Analytical Chemists (AOAC). 2007. Official methods of analysis of the AOAC. New Orleans: Association of Official Analytical Chemists.

Baker, D.H.; Batal, A.B.; Augspurger, N.R.; Parsons, C.M. 2002. Ideal ratio (relative to lysine) of tryptophan, threonine, isoleucine and valine for chicks during the second and third weeks posthatch. Poultry Science, 81(4): 485-494.https://doi.org/10.1093/ps/81.4.485

Binalshikh-Abubkr, T.; Hanafiah, M.M.; Das, S.K. 2021. Proximate chemical composition of dried shrimp and tilapia waste bioflocs produced by two drying methods. Journal of Marine Science and Engineering, 9(2): 193. https://doi.org/10.3390/jmse9020193

Braga, A.; Magalhães, V.; Hanson, T.; Morris, T.C.; Samocha, T.M. 2016. The effects of feeding commercial feed formulated for semi-intensive systems on Litopenaeus vannamei production and its profitability in a hyper-intensive biofloc-dominated system. Aquaculture Reports, 3: 172-177. https://doi.org/10.1016/j.aqrep.2016.03.002

Cai, J.; Zhou, X.; Yan, X.; Lucente, D.; Lagana, C. 2019. Top 10 Species Groups in Global Aquaculture 2017. Food and Agriculture Organization of the United Nations, FAO Fisheries and Aquaculture Department. Available at: http://www.fao.org/3/ca5224en/CA5224EN.pdf. Accessed on:Oct 30, 2023.

Castro, L.F.; Pinto, R.C.C.; Nunes, A.J.P. 2021. Nutrient value and contribution of microbial floc to the growth performance of juvenile shrimp, Litopenaeus vannamei, fed fatty acid and amino acidrestrained diets under a zero-water exchange intensive system. Aquaculture, 531: 735789. https://doi.org/10.1016/j.aquaculture.2020.735789

Chu, Y.T.; Brown, P.B. 2022. Optimal dietary crude protein in commercial feeds for shrimp and halophytes in marine aquaponic biofloc systems. Frontiers in Marine Science, 9:1824973. https://doi.org/10.3389/fmars.2022.824973

Colombo, G.M.; Santos Simião, C.; Ramírez, J.R.B.; Sousa Araujo, A.C.; Gomes, R.M.M.; Buitrago, S.A.M.; Wasielesky, W.; Monserrat, J.M. 2023. Bioflocs enriched with lyophilized açaí (Euterpe oleracea) improved the survival and weight gain of Litopenaeus vannamei post-larvae cultivated in the BFT system. Aquaculture, 566: 739230. https://doi.org/10.1016/j.aquaculture.2023.739230

Cummins Jr., V.C.; Rawles, S.D.; Thompson, K.R.; Velasquez, A.; Kobayashi, Y.; Hager, J.; Webster, C.D. 2017. Evaluation of black soldier fly (Hermetia illucens) larvaemeal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 473: 337-344. http://dx.doi.org/10.1016/j.aquaculture.2017.02.022

Dumas, A.; de Lange, C.F.M.; France, J.; Bureau, D.P. 2007. Quantitative description of body composition and rates of nutrient deposition in rainbow trout (Oncorhynchus mykiss). Aquaculture, 273(1): 165-181. https://doi.org/10.1016/j.aquaculture.2007.09.026

Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia – nitrogen in aquaculture systems. Aquaculture, 257(1-4): 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019

Ekasari, J.; Suprayudi, M.A.; Elas, P.; Senja, R.K. 2019. Thedigestibility of biofloc meal from African catfish culture medium as a feed raw material for Pacific white shrimp. Jurnal Akuakultur Indonesia, 18(1): 1-8. https://doi.org/10.19027/jai.18.1.1-8

Emerenciano, M.G.C.; Martínez-Córdova, L.R.; Martínez-Porchas, M.; Miranda Baeza, A. 2017. Biofloc Technology(BFT): A Tool for Water Quality Management in Aquaculture

Emerenciano, M.G.C.; Rombenso, A.N.; Vieira, F.D.; Martins, M.A.; Coman, G., Truong, H.H.; Noble, T.H.; Simon, C. 2022. Intensification of penaeid shrimp culture: An applied review of advances in production systems , nutrition and breeding. Animals, 12: 39. https://doi.org/10.3390/ani12030236

Ferreira, G.S.; Santos, D.; Schmachtl, F.; Machado, C.; Fernandes, V.; Bögner, M.; Schleder, D.D.; Seiffert, W.Q.; Vieira, F.N. 2021. Heterotrophic, chemoautotrophic and mature approaches in biofloc system for Pacific white shrimp. Aquaculture, 533, 736099. https://doi.org/10.1016/j.aquaculture.2020.736099

Ferreira, G.S.; Silva, V.F.; Martins, M.A.; Silva, A.C.C.P.; Machado, C.; Seiffert, W.Q.; Vieira, F.N. 2020. Strategies for ammonium and nitrite control in Litopenaeus vannamei nursery systems with bioflocs. Aquacaculture Enginnering, 88, 102040. https://doi.org/10.1016/j.aquaeng.2019.102040

Food and Agriculture Organization (FAO). 2022. The state of world fisheries and aquaculture 2022: Towards blue transformation. Rome: FAO. https://doi.org/10.4060/cc0461en

Furtado, S.; Poersch, L.H.; Wasielesky, W. 2015. The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT). Aquaculture International, 23: 345-358. https://doi.org/10.1007/s10499-014-9819-x

Gallagher, E.P.; Canada, A.T.; Di Giulio, R.T. 1992. The protective role of glutathione in chlorothalonil-induced stoxicity to channel catfish. Aquatic Toxicology, 23(3-4): 155-168. https://doi.org/10.1016/0166445X(92)90049-S

Green, B.W.; Rawles, S.D.; Schrader, K.K.; Gaylord, T.G.; McEntire, M.E. 2019. Effects of dietary protein content on hybrid tilapia (Oreochromis aureus × O. niloticus) performance, common microbial off-flavor compounds, and water quality dynamics in an outdoor biofloc technology production system. Aquaculture, 503: 571-582. https://doi.org/10.1016/j.aquaculture.2019.01.034

Gullian Klanian, M.; Delgadillo Díaz, M.; Sánchez Solís, M.J.; Aranda, J.; Moreno Moral, P. 2020. Effect of the content of microbial proteins and the poly-β-hydroxybutyric acid in biofloc on the performance and health of Nile tilapia (Oreochromis niloticus) fingerlings fed on a protein-restricted diet. Aquaculture, 519: 734872. https://doi.org/10.1016/j.aquaculture.2019.734872

Hamidoghli, A.; Won, S.; Aya, F.A.; Yun, H.; Bae, J.; Jang, I.K.; Bai, S.C. 2019. Dietary lipid requirement of whiteleg shrimp Litopenaeus vannamei juveniles cultured in biofloc system. Aquaculture Nutrition, 26(3): 603-612. https://doi.org/10.1111/anu.13021

Henriques, F.M.; Guimarães, A.M.; Díaz, C.A.; Fracalossi, D.M.; Andreatta, E.R.; Vieira, F.N. 2021. Protein requirement for initial rearing phase of Pacific white shrimp in biofloc system. Boletim do Instituto de Pesca, 47: e653. https://doi.org/10.20950/1678-2305/bip.2021.47.e653

Huang, H.H.; Liao, H.M.; Lei, Y.J.; Yang, P.H. 2022. Effects of different carbon sources on growth performance of Litopenaeus vannamei and water quality in the biofloc system in low salinity. Aquaculture, 546: 737239. https://doi.org/10.1016/j.aquaculture.2021.737239

Irani, M.; Islami, H.R; Bahabadi, M.N.; Shekarabi, S.P.H. 2023. Production of Pacific white shrimp under different stocking density in a zero-water exchange biofloc system: Effects on water quality, zootechnical performance, and body composition. Aquacultural Engineering, 100: 102313. https://doi.org/10.1016/j.aquaeng.2022.102313

Jory, D.E.; Cabrera, T.R.; Dugger, D.M.; Fegan, D.; Lee, P.G.; Lawrence, L.; Jackson, C.J.; Mcintosh, R.P.; Castañeda, J.; International, B.; Park, H.A.; Hwy, N.O.D.; Pierce, F. 2001. A global review of shrimp feed management: status and perspectives. Aquaculture, 104-152

Kaya, D.; Genc, M.A.; Aktas, M.; Yavuzcan, H.; Ozmen, O.; Genc, E., 2019. Effect of biofloc technology on growth of speckled shrimp, Metapenaeus monoceros (Fabricus) in different feeding regimes. Aquaculture Research, 50(10): 2760-2768. https://doi.org/10.1111/are.14228

Khanjani, M.H.; Mozanzadeh, M.T.; Sharifinia, M.; Emerenciano, M.G.C. 2023. Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757. https://doi.org/10.1016/j.aquaculture.2022.738757

Khanjani, M.H.; Sharifinia, M. 2022. Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquaculture International, 30: 383-397. https://doi.org/10.1007/s10499-021-00803-5

Khoa, T.N.D.; Tao, C.T.; Van Khanh, L.; Hai, T.N. 2020. Super-intensive culture of white leg shrimp (Litopenaeus vannamei) in outdoor biofloc systems with different sunlight exposure levels: Emphasis on commercial applications. Aquaculture, 524: 735277. https://doi.org/10.1016/j.aquaculture.2020.735277

Krummenauer, D.; Abreu, P.C.; Poersch, L.; Alice, P.; Paiva, C. 2020. The relationship between shrimp (Litopenaeus vannamei ) size and biofloc consumption determined by the stable isotope technique. Aquaculture, 529: 735635. https://doi.org/10.1016/j.aquaculture.2020.735635

Lara, G.; Hostins, B.; Bezerra, A.; Poersch, L.; Wasielesky, W. 2017. The effects of different feeding rates and re-feeding of Litopenaeus vannamei in a biofloc culture system. Aquaculture Enginnering, 77: 20-26. https://doi.org/10.1016/j.aquaeng.2017.02.003

Lee, C.; Lee, K.J. 2018. Dietary protein requirement of Pacific white shrimp Litopenaeus vannamei in three different growth stages. Fisheries and Aquatic Sciences, 21: 30. https://doi.org/10.1186/s41240-018-0105-0

Li, E.; Wang, X.; Chen, K.; Xu, C.; Qin, J.G.; Chen, L. 2017. Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity. Reviews in Aquaculture, 9(1): 57-75. https://doi.org/10.1111/raq.12104

Liang, Z.; Liu, R.; Zhao, D.; Wang, L.; Sun, M.; Wang, M.; Song, L. 2016. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Fish & Shellfish Immunology, 54: 523-528. https://doi.org/10.1016/j.fsi.2016.05.009

Lin, Y.C.; Chen, J.C.; Chen, Y.Y.; Yeh, S.T.; Chen, L.L.; Huang, C.L.; Hsieh, J.F.; Li, C.C. 2015. Crowding of white shrimp Litopenaeus vananmei depresses their immunity to and resistance against Vibrio alginolyticus and white spot syndrome virus. Fish & ShellfishImmunology, 45(1): 104-111. https://doi.org/10.1016/j.fsi.2015.02.012

Liu, G.; Zhu, S.; Liu, D.; Guo, X.; Ye, Z. 2017. Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system. Fish & Shellfish Immunology, 67: 19-26. https://doi.org/10.1016/j.fsi.2017.05.038

Maiti, M.K.; Sahu, N.P.; Sardar, P.; Garg, C.K.; Varghese, T.; Shamna, N.; Deo, A.D.; Harikrishna, V. 2022. Dietary lysine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone, 1931) reared in inland saline water of 10 ppt salinity. Animal Feed Science and Technology, 291: 115378. https://doi.org/10.1016/j.anifeedsci.2022.115378

Mansour, A.T.; Ashour, M.; Alprol, A.E.; Alsaqufi, A.S. 2022a. Aquatic Plants and aquatic animals in the context of sustainability: Cultivation techniques, integration, and blue revolution. Sustainability, 14(6): 3257. https://doi.org/10.3390/su14063257

Mansour, A.T.; Ashry, O.A.; Ashour, M.; Alsaqufi, A.S.; Ramadan, K.M.A.; Sharawy, Z.Z. 2022b. The optimization of dietary protein level and carbon sources on biofloc nutritive values, bacterial abundance, and growth performances of whiteleg shrimp (Litopenaeus vannamei) juveniles. Life, 12(6): 888. https://doi.org/10.3390/life12060888

Miao, S.; Hu, J.; Wan, W.; Han, B.; Zhou, Y.; Xin, Z.; Sun, L. 2020. Biofloc technology with addition of different carbon sources altered the antibacterial and antioxidant response in Macrobrachium rosenbergii to acute stress. Aquaculture, 525:735280. https://doi.org/10.1016/j.aquaculture.2020.735280

Nethaji, M.; Ahilan, B.; Kathirvelpandiyan, A.; Felix, N.; Uma, A.; Mosses, T.L.S.S.; Lingan, R.S.S. 2022. Biofloc meal incorporated diet improves the growth and physiological responses of Penaeus vannamei. Aquaculture International, 30: 2705-2724. https://doi.org/10.1007/s10499-022-00929-0

Nunes, A.J.P.; Dalen, L.L.; Leonardi, G.; Burri, L. 2022. Developing sustainable, cost-effective and high-performance shrimp feed formulations containing low fish meal levels. Aquaculture Reports, 27: 101422. https://doi.org/10.1016/j.aqrep.2022.101422

Oakes, K.D.; Van Der Kraak, G.J. 2003. Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63(4): 447-463. https://doi.org/10.1016/S0166-445X(02)00204-7

Okpala, C.O.R.; Bono, G.; Geraci, M.L.; Sardo, G.; Vitale, S.; Schaschke, C.J. 2016. Lipid oxidation kinetics of ozone-processed shrimp during iced storage using peroxide value measurements. Food Bioscience, 16: 5-10. https://doi.org/10.1016/j.fbio.2016.07.005

Ouraji, H.; Kenari, A.M.A.; Shabanpour, B.; Shabani, A.; Sodagar, M.; Jafarpour, S.A.; Ebrahimi, G.H. 2011. Growth, survival, and fatty acid composition of Indian white shrimp Fenneropenaeus indicus (Milne Edwards) fed diets containing different levels of vitamin E and lipid. Aquaculture International, 19: 903-916. https://doi.org/10.1007/s10499-010-9409-5

Panigrahi, A.; Saranya, C.; Sundaram, M.; Vinoth Kannan, S.R.; Das, R.R.; Satish Kumar, R.; Rajesh, P.; Otta, S.K. 2018. Carbon: Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish & Shellfish Immunology, 81:329-337. https://doi.org/10.1016/j.fsi.2018.07.035

Panigrahi, A.; Sivakumar, M.R.; Sundaram, M.; Saravanan, A.; Das, R.R.; Katneni, V.K.; Ambasankar, K.; Syama Dayal, J.; Gopikrishna, G. 2020. Comparative study on phenoloxidase activity of biofloc-reared pacific white shrimp Penaeus vannamei and Indian white shrimp Penaeus indicus on graded protein diet. Aquaculture, 518: 734654. https://doi.org/10.1016/j.aquaculture.2019.734654

Panigrahi, A.; Sundaram, M.; Saranya, C.; Satish Kumar, R.; Syama Dayal, J.; Saraswathy, R.; Otta, S.K.; Shyne Anand, P.S.; Nila Rekha, P.; Gopal, C. 2019. Influence of differential protein levels of feed on production performance and immune response of pacific white leg shrimp in a biofloc–based system. Aquaculture, 503: 118-127. https://doi.org/10.1016/j.aquaculture.2018.12.036

Peixoto, S.; Silva, E.; Costa, C.B.; Nery, R.C.; Rodrigues,F.; Silva, J.F.; Bezerra, R.; Soares, R. 2018. Effect of feeding frequency on growth and enzymatic activity of Litopenaeus vannamei during nursery phase in biofloc system. Aquaculture Nutrition, 24(1): 579-585. https://doi.org/10.1111/anu.12591

Pinho, S.M.; Emerenciano, M.G.C. 2021. Sensorial attributes and growth performance of whiteleg shrimp (Litopenaeus vannamei) cultured in biofloc technology with varying water salinity and dietary protein content. Aquaculture, 540: 736727. https://doi.org/10.1016/j.aquaculture.2021.736727

Prates, E.; Holanda, M.; Pedrosa, V.F.; Monserrat, J.M.; Wasielesky, W. 2023. Compensatory growth and energy reserves changes in the Pacific white shrimp (Litopenaeus vannamei) reared in different temperatures and under feed restriction in biofloc technology system (BFT). Aquaculture, 562: 738821. https://doi.org/10.1016/j.aquaculture.2022.738821

Qiu, X.; Neori, A.; Kim, K.K.; Yarish, C.; Shpigel, M.; Guttman, L.; Ezra, D.B.; Odintsov, V.; Davis, D.A. 2018. Evaluation of green seaweed Ulva sp. as a replacement of fish meal in plant-based practical diets for Pacific white shrimp, Litopenaeus vannamei. Journal of Applied Phycology, 30: 1305-1316. https://doi.org/10.1007/s10811-017-1278-0

Rajkumar, M.; Pandey, P.K.; Aravind, R.; Vennila, A.; Bharti, V.; Purushothaman, C.S. 2016. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquaculture Research, 47(11): 3432-3444. https://doi.org/10.1111/are.12792

Rego, M.A.S.; Sabbag, O.J.; Soares, R.; Peixoto, S. 2017. Financial viability of inserting the biofloc technology in a marine shrimp Litopenaeus vannamei farm: a case study in the state of Pernambuco, Brazil. Aquaculture Intrenational, 25: 473-483. https://doi.org/10.1007/s10499-016-0044-7

Reis, W.G.; Wasielesky, W.; Abreu, P.C.; Brandão, H.; Krummenauer, D. 2019. Rearing of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in BFT system with different photoperiods: Effects on the microbial community, water quality and zootechnical performance. Aquaculture, 508: 19-29. https://doi.org/10.1016/j.aquaculture.2019.04.067

Samocha, T.M.; Prangnell, D.I.; Hanson, T.R.; Treece, G.D.; Morris, T.C.; Castro, L.F.; Staresinic, N. 2017. Design and operation of super-intensive biofloc-dominated systems for indoor production of the pacific White shrimp, Litopenaeus vannamei. Baton Rouge: World Aquaculture Society.

Santos, N.B.V.; Furtado, P.S.; César, D.E.; Wasielesky Jr., W. 2019. Assessment of the nitrification process in a culture of pacific white shrimp, using artificial substrate and bacterial inoculum in a biofloc technology system (BFT). Ciência Rural, 49(6): e20180306. https://doi.org/10.1590/0103-8478cr20180306

Shao, J.; Liu, M.; Wang, B.; Jiang, K.; Wang, M.; Wang, L. 2017. Evaluation of biofloc meal as an ingredient in diets for white shrimp Litopenaeus vannamei under practical conditions: Effect on growth performance, digestive enzymes and TOR signaling pathway. Aquaculture, 479: 516-521. https://doi.org/10.1016/j.aquaculture.2017.06.034

Sies, H. 2015. Oxidative stress: A concept in redox biology and medicine. Redox Biology, 4: 180-183. https://doi. org/10.1016/j.redox.2015.01.002

Silva Martins, Á.C.; Artigas Flores, J.; Porto, C.; Wasielesky, W.; Monserrat, J.M. 2015. Antioxidant and oxidative damage responses in different organs of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) reared in a biofloc technology system. Marine and Freshwater Behaviour and Physiology, 48(4): 279-288. https://doi.org/10.1080/10236244.2015.1041240

Silveira, L.G.P.; Krummenauer, D.; Poersch, L.H.; Rosas, V.T.; Wasielesky, W. 2020. Hyperintensive stocking densities for Litopenaeus vannamei grow-out in biofloc technology culture system. Journal of the World Aquaculture Society, 51(6): 1290-1300. https://doi.org/10.1111/jwas.12718

Silveira, L.G.P.; Rosas, V.T.; Krummenauer, D.; Fróes, C.; Silva, A.; Poersch, L.H.; Fóes, G.; Wasielesky, W. 2022a. Establishing the most productive stocking densities for each stage of a multi-phase shrimp culture in BFT system. Aquacaculture International, 30: 1889-1903. https://doi.org/10.1007/s10499-022-00879-7

Silveira, L.G.P.; Rosas, V.T.; Krummenauer, D.; Poersch, L.H.; Fóes, G.; Wasielesky, W. 2022b. Comparison between horizontal and vertical substrate in shrimp super-intensive culture in bioflocs system. Aquacultural Engineering, 96:102218. https://doi.org/10.1016/j.aquaeng.2021.102218

Strebel, L.M.; Nguyen, K.; Araujo, A.; Corby, T.; Rhodes, M.; Beck, B.H.; Roy, L.A.; Davis, D.A. 2023. On demand feeding and the response of Pacific white shrimp (Litopenaeus vannamei) to varying dietary protein levels in semi-intensive pond production. Aquaculture, 574:739698. https://doi.org/10.1016/j.aquaculture.2023.739698

Tong, R.; Chen, W.; Pan, L.; Zhang, K. 2020. Effects of feeding level and C/N ratio on water quality, growth performance, immune and antioxidant status of Litopenaeus vannamei in zero –water exchange bioflocs-based outdoor soil culture ponds. Fish & Shellfish Immunology, 101: 126-134. https://doi.org/10.1016/j.fsi.2020.03.051

United Nations Educational, Scientific and Cultural Organization. 1983. Chemical methods for use in marine environmental monitoring. Intergovernmental Oceanographic Commission.

Wang, X.D.; Li, E.C.; Wang, S.F.; Qin, J.G.; Chen, X.F.; Lai, Q.M.; Chen, K.; Xu, C.; Gan, L.; Yu, N.; Du, Z.Y.; Chen, L.Q. 2015. Protein-sparing effect of carbohydrate in the diet of white shrimp Litopenaeus vannamei at low salinity. Aquaculture Nutritional, 21(6): 904-912. https://doi.org/10.1111/anu.12221

Xie, S.; Fang, W.; Wei, D.; Liu, Y.; Yin, P.; Niu, J.; Tian, L. 2018. Dietary supplementation of Haematococcus pluvialis improved the immune capacity and low salinity tolerance ability of post-larval white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 80: 452-457. https://doi.org/10.1016/j.fsi.2018.06.039

Xu, W.J.; Morris, T.C.; Samocha, T.M. 2018. Effects of two commercial feeds for semi-intensive and hyper-intensive culture and four C/N ratios on water quality and performance of Litopenaeus vannamei juveniles at high density in biofloc-based, zero-exchange outdoor tanks. Aquaculture, 490: 194- 202. https://doi.org/10.1016/j.aquaculture.2018.02.028

Yao, W.; Zhang, C.; Li, X.; He, M.; Wang, J.; Leng, X. 2020. The replacement of fish meal with fermented soya bean meal or soya bean meal in the diet of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Research, 51(6): 2400-2409. https://doi.org/10.1111/are.14583

Yun, H.; Shahkar, E.; Katya, K.; Jang, I.K.; Kim, S.K., Bai, S.C. 2016. Effects of bioflocs on dietary protein requirement in juvenile whiteleg Shrimp, Litopenaeus vannamei. Aquaculture Research, 47(10): 3203-3214. https://doi.org/10.1111/are.12772

Zamora, R.; Hidalgo, F.J. 2016. The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products. Trends in Food Science & Technology, 54: 165-174. https://doi.org/10.1016/j.tifs.2016.06.006

Zar, J.H. 2010. Biostatistical Analysis. New Jersey: Prentice Hall.

Downloads

Publicado

2023-12-15

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)