Diferentes níveis proteicos no cultivo superintensivo de juvenis de camarões-brancos Litopenaeus vannamei em sistema de bioflocos durante período de berçário secundário
DOI:
https://doi.org/10.20950/1678-2305/bip.2023.49.e851Palavras-chave:
Sistema antioxidante, Fator de conversão alimentar, Custos de alimentação, CrescimentoResumo
A determinação dos níveis de proteína bruta em dietas de organismos aquáticos permite maximizar o crescimento, reduzir os custos com alimentação e melhorar a qualidade da água. Foi realizado o cultivo de Litopenaeus vannamei em sistema superintensivo com bioflocos utilizando cinco dietas com diferentes níveis de proteína bruta (PB)
(320 g·kg-1 PB, 360 g·kg-1 PB, 400 g·kg-1 PB, 440 g·kg-1 PB e 480 g·kg-1 PB). Cada dieta foi utilizada em quadruplicata. O período experimental durou 35 dias, e os camarões (0,59 ± 0,001 g) foram estocados na densidade de 600 PL·m-3, utilizando 20 unidades experimentais (50 L de volume útil). Não houve diferenças significativas na sobrevivência dos animais entre os tratamentos (p > 0,05). Os animais alimentados com 480 g·kg-1 apresentaram maior peso final e taxa de crescimento específico quando comparados aos tratamentos alimentados com 320 g·kg-1 (p < 0,05). Além disso, alimentar camarões com dietas com 32% de PB resultou em redução na utilização de ração e retenção de nutrientes, aumentando assim os custos com ração. No geral, de acordo com a análise broken line, 38% de PB seria o ideal, e de acordo com a regressão quadrática 46% de PB resultaria no melhor crescimento de L. vannamei nessa fase de crescimento.
Referências
Almeida, M.S.; Carrijo-Mauad, J.R.; Gimenes, R.M.T.; Gaona, C.A.P.; Furtado, P.S.; Poersch, L.H.; Wasielesky, W.; Fóes, G.K. 2021. Bioeconomic analysis of the production of marine shrimp in greenhouses using the biofloc technology system. Aquaculture International, 29: 723-741. https://doi.org/10.1007/s10499-021-00653-1
Amado, L.L.; Garcia, M.L.; Ramos, P.B.; Freitas, R.F.; Zafalon, B.; Ferreira, J.L.R.; Yunes, J.S.; Monserrat, J.M. 2009. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: Application to evaluate microcystins toxicity. Science of the Total Environment, 407(6): 2115-2123. https://doi.org/10.1016/j.scitotenv.2008.11.038
American Public Health Association (APHA). 2005. Standard Methods for the Examination of Water and Wastewater. 21th ed. Gaithersburg: Association of Official Analytical chemists.
Aminot, A.; Chaussepied, M. 1983. Manuel des analyses chimiques en milieu marin. France: Centre National pour l’exploitation des océans.
Anand, P.S.S.; Aravind, R.; Biju, I.F.; Balasubramanian, C.P.; Antony, J.; Saranya, C.; Christina, L.; Rajamanickam, S.; Panigrahi, A.; Ambasankar, K.; Vijayan, K.K. 2021. Nursery rearing of Indian white shrimp, Penaeus indicus: Optimization of dietary protein levels and stocking densities under different management regimes. Aquaculture, 542, 736807. https://doi.org/10.1016/j.aquaculture.2021.736807
Ashour, M.; Mabrouk, M.M.; Abo-Taleb, H.A.; Sharawy, Z.Z.; Ayoub, H.F.; Van Doan, H.; Davies, S.J.; El-Haroun, E.; Goda, A.M.S.A. 2021. A liquid seaweed extract (TAM®) improves aqueous rearing environment, diversity of zooplankton community, whilst enhancing growth and immune response of Nile tilapia, Oreochromis niloticus, challenged by Aeromonas hydrophila. Aquaculture, 543: 736915. https://doi.org/10.1016/j.aquaculture.2021.736915
Association of Official Analytical Chemists (AOAC). 2007. Official methods of analysis of the AOAC. New Orleans: Association of Official Analytical Chemists.
Baker, D.H.; Batal, A.B.; Augspurger, N.R.; Parsons, C.M. 2002. Ideal ratio (relative to lysine) of tryptophan, threonine, isoleucine and valine for chicks during the second and third weeks posthatch. Poultry Science, 81(4): 485-494.https://doi.org/10.1093/ps/81.4.485
Binalshikh-Abubkr, T.; Hanafiah, M.M.; Das, S.K. 2021. Proximate chemical composition of dried shrimp and tilapia waste bioflocs produced by two drying methods. Journal of Marine Science and Engineering, 9(2): 193. https://doi.org/10.3390/jmse9020193
Braga, A.; Magalhães, V.; Hanson, T.; Morris, T.C.; Samocha, T.M. 2016. The effects of feeding commercial feed formulated for semi-intensive systems on Litopenaeus vannamei production and its profitability in a hyper-intensive biofloc-dominated system. Aquaculture Reports, 3: 172-177. https://doi.org/10.1016/j.aqrep.2016.03.002
Cai, J.; Zhou, X.; Yan, X.; Lucente, D.; Lagana, C. 2019. Top 10 Species Groups in Global Aquaculture 2017. Food and Agriculture Organization of the United Nations, FAO Fisheries and Aquaculture Department. Available at: http://www.fao.org/3/ca5224en/CA5224EN.pdf. Accessed on:Oct 30, 2023.
Castro, L.F.; Pinto, R.C.C.; Nunes, A.J.P. 2021. Nutrient value and contribution of microbial floc to the growth performance of juvenile shrimp, Litopenaeus vannamei, fed fatty acid and amino acidrestrained diets under a zero-water exchange intensive system. Aquaculture, 531: 735789. https://doi.org/10.1016/j.aquaculture.2020.735789
Chu, Y.T.; Brown, P.B. 2022. Optimal dietary crude protein in commercial feeds for shrimp and halophytes in marine aquaponic biofloc systems. Frontiers in Marine Science, 9:1824973. https://doi.org/10.3389/fmars.2022.824973
Colombo, G.M.; Santos Simião, C.; Ramírez, J.R.B.; Sousa Araujo, A.C.; Gomes, R.M.M.; Buitrago, S.A.M.; Wasielesky, W.; Monserrat, J.M. 2023. Bioflocs enriched with lyophilized açaí (Euterpe oleracea) improved the survival and weight gain of Litopenaeus vannamei post-larvae cultivated in the BFT system. Aquaculture, 566: 739230. https://doi.org/10.1016/j.aquaculture.2023.739230
Cummins Jr., V.C.; Rawles, S.D.; Thompson, K.R.; Velasquez, A.; Kobayashi, Y.; Hager, J.; Webster, C.D. 2017. Evaluation of black soldier fly (Hermetia illucens) larvaemeal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 473: 337-344. http://dx.doi.org/10.1016/j.aquaculture.2017.02.022
Dumas, A.; de Lange, C.F.M.; France, J.; Bureau, D.P. 2007. Quantitative description of body composition and rates of nutrient deposition in rainbow trout (Oncorhynchus mykiss). Aquaculture, 273(1): 165-181. https://doi.org/10.1016/j.aquaculture.2007.09.026
Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia – nitrogen in aquaculture systems. Aquaculture, 257(1-4): 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019
Ekasari, J.; Suprayudi, M.A.; Elas, P.; Senja, R.K. 2019. Thedigestibility of biofloc meal from African catfish culture medium as a feed raw material for Pacific white shrimp. Jurnal Akuakultur Indonesia, 18(1): 1-8. https://doi.org/10.19027/jai.18.1.1-8
Emerenciano, M.G.C.; Martínez-Córdova, L.R.; Martínez-Porchas, M.; Miranda Baeza, A. 2017. Biofloc Technology(BFT): A Tool for Water Quality Management in Aquaculture
Emerenciano, M.G.C.; Rombenso, A.N.; Vieira, F.D.; Martins, M.A.; Coman, G., Truong, H.H.; Noble, T.H.; Simon, C. 2022. Intensification of penaeid shrimp culture: An applied review of advances in production systems , nutrition and breeding. Animals, 12: 39. https://doi.org/10.3390/ani12030236
Ferreira, G.S.; Santos, D.; Schmachtl, F.; Machado, C.; Fernandes, V.; Bögner, M.; Schleder, D.D.; Seiffert, W.Q.; Vieira, F.N. 2021. Heterotrophic, chemoautotrophic and mature approaches in biofloc system for Pacific white shrimp. Aquaculture, 533, 736099. https://doi.org/10.1016/j.aquaculture.2020.736099
Ferreira, G.S.; Silva, V.F.; Martins, M.A.; Silva, A.C.C.P.; Machado, C.; Seiffert, W.Q.; Vieira, F.N. 2020. Strategies for ammonium and nitrite control in Litopenaeus vannamei nursery systems with bioflocs. Aquacaculture Enginnering, 88, 102040. https://doi.org/10.1016/j.aquaeng.2019.102040
Food and Agriculture Organization (FAO). 2022. The state of world fisheries and aquaculture 2022: Towards blue transformation. Rome: FAO. https://doi.org/10.4060/cc0461en
Furtado, S.; Poersch, L.H.; Wasielesky, W. 2015. The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT). Aquaculture International, 23: 345-358. https://doi.org/10.1007/s10499-014-9819-x
Gallagher, E.P.; Canada, A.T.; Di Giulio, R.T. 1992. The protective role of glutathione in chlorothalonil-induced stoxicity to channel catfish. Aquatic Toxicology, 23(3-4): 155-168. https://doi.org/10.1016/0166445X(92)90049-S
Green, B.W.; Rawles, S.D.; Schrader, K.K.; Gaylord, T.G.; McEntire, M.E. 2019. Effects of dietary protein content on hybrid tilapia (Oreochromis aureus × O. niloticus) performance, common microbial off-flavor compounds, and water quality dynamics in an outdoor biofloc technology production system. Aquaculture, 503: 571-582. https://doi.org/10.1016/j.aquaculture.2019.01.034
Gullian Klanian, M.; Delgadillo Díaz, M.; Sánchez Solís, M.J.; Aranda, J.; Moreno Moral, P. 2020. Effect of the content of microbial proteins and the poly-β-hydroxybutyric acid in biofloc on the performance and health of Nile tilapia (Oreochromis niloticus) fingerlings fed on a protein-restricted diet. Aquaculture, 519: 734872. https://doi.org/10.1016/j.aquaculture.2019.734872
Hamidoghli, A.; Won, S.; Aya, F.A.; Yun, H.; Bae, J.; Jang, I.K.; Bai, S.C. 2019. Dietary lipid requirement of whiteleg shrimp Litopenaeus vannamei juveniles cultured in biofloc system. Aquaculture Nutrition, 26(3): 603-612. https://doi.org/10.1111/anu.13021
Henriques, F.M.; Guimarães, A.M.; Díaz, C.A.; Fracalossi, D.M.; Andreatta, E.R.; Vieira, F.N. 2021. Protein requirement for initial rearing phase of Pacific white shrimp in biofloc system. Boletim do Instituto de Pesca, 47: e653. https://doi.org/10.20950/1678-2305/bip.2021.47.e653
Huang, H.H.; Liao, H.M.; Lei, Y.J.; Yang, P.H. 2022. Effects of different carbon sources on growth performance of Litopenaeus vannamei and water quality in the biofloc system in low salinity. Aquaculture, 546: 737239. https://doi.org/10.1016/j.aquaculture.2021.737239
Irani, M.; Islami, H.R; Bahabadi, M.N.; Shekarabi, S.P.H. 2023. Production of Pacific white shrimp under different stocking density in a zero-water exchange biofloc system: Effects on water quality, zootechnical performance, and body composition. Aquacultural Engineering, 100: 102313. https://doi.org/10.1016/j.aquaeng.2022.102313
Jory, D.E.; Cabrera, T.R.; Dugger, D.M.; Fegan, D.; Lee, P.G.; Lawrence, L.; Jackson, C.J.; Mcintosh, R.P.; Castañeda, J.; International, B.; Park, H.A.; Hwy, N.O.D.; Pierce, F. 2001. A global review of shrimp feed management: status and perspectives. Aquaculture, 104-152
Kaya, D.; Genc, M.A.; Aktas, M.; Yavuzcan, H.; Ozmen, O.; Genc, E., 2019. Effect of biofloc technology on growth of speckled shrimp, Metapenaeus monoceros (Fabricus) in different feeding regimes. Aquaculture Research, 50(10): 2760-2768. https://doi.org/10.1111/are.14228
Khanjani, M.H.; Mozanzadeh, M.T.; Sharifinia, M.; Emerenciano, M.G.C. 2023. Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757. https://doi.org/10.1016/j.aquaculture.2022.738757
Khanjani, M.H.; Sharifinia, M. 2022. Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquaculture International, 30: 383-397. https://doi.org/10.1007/s10499-021-00803-5
Khoa, T.N.D.; Tao, C.T.; Van Khanh, L.; Hai, T.N. 2020. Super-intensive culture of white leg shrimp (Litopenaeus vannamei) in outdoor biofloc systems with different sunlight exposure levels: Emphasis on commercial applications. Aquaculture, 524: 735277. https://doi.org/10.1016/j.aquaculture.2020.735277
Krummenauer, D.; Abreu, P.C.; Poersch, L.; Alice, P.; Paiva, C. 2020. The relationship between shrimp (Litopenaeus vannamei ) size and biofloc consumption determined by the stable isotope technique. Aquaculture, 529: 735635. https://doi.org/10.1016/j.aquaculture.2020.735635
Lara, G.; Hostins, B.; Bezerra, A.; Poersch, L.; Wasielesky, W. 2017. The effects of different feeding rates and re-feeding of Litopenaeus vannamei in a biofloc culture system. Aquaculture Enginnering, 77: 20-26. https://doi.org/10.1016/j.aquaeng.2017.02.003
Lee, C.; Lee, K.J. 2018. Dietary protein requirement of Pacific white shrimp Litopenaeus vannamei in three different growth stages. Fisheries and Aquatic Sciences, 21: 30. https://doi.org/10.1186/s41240-018-0105-0
Li, E.; Wang, X.; Chen, K.; Xu, C.; Qin, J.G.; Chen, L. 2017. Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity. Reviews in Aquaculture, 9(1): 57-75. https://doi.org/10.1111/raq.12104
Liang, Z.; Liu, R.; Zhao, D.; Wang, L.; Sun, M.; Wang, M.; Song, L. 2016. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Fish & Shellfish Immunology, 54: 523-528. https://doi.org/10.1016/j.fsi.2016.05.009
Lin, Y.C.; Chen, J.C.; Chen, Y.Y.; Yeh, S.T.; Chen, L.L.; Huang, C.L.; Hsieh, J.F.; Li, C.C. 2015. Crowding of white shrimp Litopenaeus vananmei depresses their immunity to and resistance against Vibrio alginolyticus and white spot syndrome virus. Fish & ShellfishImmunology, 45(1): 104-111. https://doi.org/10.1016/j.fsi.2015.02.012
Liu, G.; Zhu, S.; Liu, D.; Guo, X.; Ye, Z. 2017. Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system. Fish & Shellfish Immunology, 67: 19-26. https://doi.org/10.1016/j.fsi.2017.05.038
Maiti, M.K.; Sahu, N.P.; Sardar, P.; Garg, C.K.; Varghese, T.; Shamna, N.; Deo, A.D.; Harikrishna, V. 2022. Dietary lysine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone, 1931) reared in inland saline water of 10 ppt salinity. Animal Feed Science and Technology, 291: 115378. https://doi.org/10.1016/j.anifeedsci.2022.115378
Mansour, A.T.; Ashour, M.; Alprol, A.E.; Alsaqufi, A.S. 2022a. Aquatic Plants and aquatic animals in the context of sustainability: Cultivation techniques, integration, and blue revolution. Sustainability, 14(6): 3257. https://doi.org/10.3390/su14063257
Mansour, A.T.; Ashry, O.A.; Ashour, M.; Alsaqufi, A.S.; Ramadan, K.M.A.; Sharawy, Z.Z. 2022b. The optimization of dietary protein level and carbon sources on biofloc nutritive values, bacterial abundance, and growth performances of whiteleg shrimp (Litopenaeus vannamei) juveniles. Life, 12(6): 888. https://doi.org/10.3390/life12060888
Miao, S.; Hu, J.; Wan, W.; Han, B.; Zhou, Y.; Xin, Z.; Sun, L. 2020. Biofloc technology with addition of different carbon sources altered the antibacterial and antioxidant response in Macrobrachium rosenbergii to acute stress. Aquaculture, 525:735280. https://doi.org/10.1016/j.aquaculture.2020.735280
Nethaji, M.; Ahilan, B.; Kathirvelpandiyan, A.; Felix, N.; Uma, A.; Mosses, T.L.S.S.; Lingan, R.S.S. 2022. Biofloc meal incorporated diet improves the growth and physiological responses of Penaeus vannamei. Aquaculture International, 30: 2705-2724. https://doi.org/10.1007/s10499-022-00929-0
Nunes, A.J.P.; Dalen, L.L.; Leonardi, G.; Burri, L. 2022. Developing sustainable, cost-effective and high-performance shrimp feed formulations containing low fish meal levels. Aquaculture Reports, 27: 101422. https://doi.org/10.1016/j.aqrep.2022.101422
Oakes, K.D.; Van Der Kraak, G.J. 2003. Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63(4): 447-463. https://doi.org/10.1016/S0166-445X(02)00204-7
Okpala, C.O.R.; Bono, G.; Geraci, M.L.; Sardo, G.; Vitale, S.; Schaschke, C.J. 2016. Lipid oxidation kinetics of ozone-processed shrimp during iced storage using peroxide value measurements. Food Bioscience, 16: 5-10. https://doi.org/10.1016/j.fbio.2016.07.005
Ouraji, H.; Kenari, A.M.A.; Shabanpour, B.; Shabani, A.; Sodagar, M.; Jafarpour, S.A.; Ebrahimi, G.H. 2011. Growth, survival, and fatty acid composition of Indian white shrimp Fenneropenaeus indicus (Milne Edwards) fed diets containing different levels of vitamin E and lipid. Aquaculture International, 19: 903-916. https://doi.org/10.1007/s10499-010-9409-5
Panigrahi, A.; Saranya, C.; Sundaram, M.; Vinoth Kannan, S.R.; Das, R.R.; Satish Kumar, R.; Rajesh, P.; Otta, S.K. 2018. Carbon: Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish & Shellfish Immunology, 81:329-337. https://doi.org/10.1016/j.fsi.2018.07.035
Panigrahi, A.; Sivakumar, M.R.; Sundaram, M.; Saravanan, A.; Das, R.R.; Katneni, V.K.; Ambasankar, K.; Syama Dayal, J.; Gopikrishna, G. 2020. Comparative study on phenoloxidase activity of biofloc-reared pacific white shrimp Penaeus vannamei and Indian white shrimp Penaeus indicus on graded protein diet. Aquaculture, 518: 734654. https://doi.org/10.1016/j.aquaculture.2019.734654
Panigrahi, A.; Sundaram, M.; Saranya, C.; Satish Kumar, R.; Syama Dayal, J.; Saraswathy, R.; Otta, S.K.; Shyne Anand, P.S.; Nila Rekha, P.; Gopal, C. 2019. Influence of differential protein levels of feed on production performance and immune response of pacific white leg shrimp in a biofloc–based system. Aquaculture, 503: 118-127. https://doi.org/10.1016/j.aquaculture.2018.12.036
Peixoto, S.; Silva, E.; Costa, C.B.; Nery, R.C.; Rodrigues,F.; Silva, J.F.; Bezerra, R.; Soares, R. 2018. Effect of feeding frequency on growth and enzymatic activity of Litopenaeus vannamei during nursery phase in biofloc system. Aquaculture Nutrition, 24(1): 579-585. https://doi.org/10.1111/anu.12591
Pinho, S.M.; Emerenciano, M.G.C. 2021. Sensorial attributes and growth performance of whiteleg shrimp (Litopenaeus vannamei) cultured in biofloc technology with varying water salinity and dietary protein content. Aquaculture, 540: 736727. https://doi.org/10.1016/j.aquaculture.2021.736727
Prates, E.; Holanda, M.; Pedrosa, V.F.; Monserrat, J.M.; Wasielesky, W. 2023. Compensatory growth and energy reserves changes in the Pacific white shrimp (Litopenaeus vannamei) reared in different temperatures and under feed restriction in biofloc technology system (BFT). Aquaculture, 562: 738821. https://doi.org/10.1016/j.aquaculture.2022.738821
Qiu, X.; Neori, A.; Kim, K.K.; Yarish, C.; Shpigel, M.; Guttman, L.; Ezra, D.B.; Odintsov, V.; Davis, D.A. 2018. Evaluation of green seaweed Ulva sp. as a replacement of fish meal in plant-based practical diets for Pacific white shrimp, Litopenaeus vannamei. Journal of Applied Phycology, 30: 1305-1316. https://doi.org/10.1007/s10811-017-1278-0
Rajkumar, M.; Pandey, P.K.; Aravind, R.; Vennila, A.; Bharti, V.; Purushothaman, C.S. 2016. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquaculture Research, 47(11): 3432-3444. https://doi.org/10.1111/are.12792
Rego, M.A.S.; Sabbag, O.J.; Soares, R.; Peixoto, S. 2017. Financial viability of inserting the biofloc technology in a marine shrimp Litopenaeus vannamei farm: a case study in the state of Pernambuco, Brazil. Aquaculture Intrenational, 25: 473-483. https://doi.org/10.1007/s10499-016-0044-7
Reis, W.G.; Wasielesky, W.; Abreu, P.C.; Brandão, H.; Krummenauer, D. 2019. Rearing of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in BFT system with different photoperiods: Effects on the microbial community, water quality and zootechnical performance. Aquaculture, 508: 19-29. https://doi.org/10.1016/j.aquaculture.2019.04.067
Samocha, T.M.; Prangnell, D.I.; Hanson, T.R.; Treece, G.D.; Morris, T.C.; Castro, L.F.; Staresinic, N. 2017. Design and operation of super-intensive biofloc-dominated systems for indoor production of the pacific White shrimp, Litopenaeus vannamei. Baton Rouge: World Aquaculture Society.
Santos, N.B.V.; Furtado, P.S.; César, D.E.; Wasielesky Jr., W. 2019. Assessment of the nitrification process in a culture of pacific white shrimp, using artificial substrate and bacterial inoculum in a biofloc technology system (BFT). Ciência Rural, 49(6): e20180306. https://doi.org/10.1590/0103-8478cr20180306
Shao, J.; Liu, M.; Wang, B.; Jiang, K.; Wang, M.; Wang, L. 2017. Evaluation of biofloc meal as an ingredient in diets for white shrimp Litopenaeus vannamei under practical conditions: Effect on growth performance, digestive enzymes and TOR signaling pathway. Aquaculture, 479: 516-521. https://doi.org/10.1016/j.aquaculture.2017.06.034
Sies, H. 2015. Oxidative stress: A concept in redox biology and medicine. Redox Biology, 4: 180-183. https://doi. org/10.1016/j.redox.2015.01.002
Silva Martins, Á.C.; Artigas Flores, J.; Porto, C.; Wasielesky, W.; Monserrat, J.M. 2015. Antioxidant and oxidative damage responses in different organs of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) reared in a biofloc technology system. Marine and Freshwater Behaviour and Physiology, 48(4): 279-288. https://doi.org/10.1080/10236244.2015.1041240
Silveira, L.G.P.; Krummenauer, D.; Poersch, L.H.; Rosas, V.T.; Wasielesky, W. 2020. Hyperintensive stocking densities for Litopenaeus vannamei grow-out in biofloc technology culture system. Journal of the World Aquaculture Society, 51(6): 1290-1300. https://doi.org/10.1111/jwas.12718
Silveira, L.G.P.; Rosas, V.T.; Krummenauer, D.; Fróes, C.; Silva, A.; Poersch, L.H.; Fóes, G.; Wasielesky, W. 2022a. Establishing the most productive stocking densities for each stage of a multi-phase shrimp culture in BFT system. Aquacaculture International, 30: 1889-1903. https://doi.org/10.1007/s10499-022-00879-7
Silveira, L.G.P.; Rosas, V.T.; Krummenauer, D.; Poersch, L.H.; Fóes, G.; Wasielesky, W. 2022b. Comparison between horizontal and vertical substrate in shrimp super-intensive culture in bioflocs system. Aquacultural Engineering, 96:102218. https://doi.org/10.1016/j.aquaeng.2021.102218
Strebel, L.M.; Nguyen, K.; Araujo, A.; Corby, T.; Rhodes, M.; Beck, B.H.; Roy, L.A.; Davis, D.A. 2023. On demand feeding and the response of Pacific white shrimp (Litopenaeus vannamei) to varying dietary protein levels in semi-intensive pond production. Aquaculture, 574:739698. https://doi.org/10.1016/j.aquaculture.2023.739698
Tong, R.; Chen, W.; Pan, L.; Zhang, K. 2020. Effects of feeding level and C/N ratio on water quality, growth performance, immune and antioxidant status of Litopenaeus vannamei in zero –water exchange bioflocs-based outdoor soil culture ponds. Fish & Shellfish Immunology, 101: 126-134. https://doi.org/10.1016/j.fsi.2020.03.051
United Nations Educational, Scientific and Cultural Organization. 1983. Chemical methods for use in marine environmental monitoring. Intergovernmental Oceanographic Commission.
Wang, X.D.; Li, E.C.; Wang, S.F.; Qin, J.G.; Chen, X.F.; Lai, Q.M.; Chen, K.; Xu, C.; Gan, L.; Yu, N.; Du, Z.Y.; Chen, L.Q. 2015. Protein-sparing effect of carbohydrate in the diet of white shrimp Litopenaeus vannamei at low salinity. Aquaculture Nutritional, 21(6): 904-912. https://doi.org/10.1111/anu.12221
Xie, S.; Fang, W.; Wei, D.; Liu, Y.; Yin, P.; Niu, J.; Tian, L. 2018. Dietary supplementation of Haematococcus pluvialis improved the immune capacity and low salinity tolerance ability of post-larval white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 80: 452-457. https://doi.org/10.1016/j.fsi.2018.06.039
Xu, W.J.; Morris, T.C.; Samocha, T.M. 2018. Effects of two commercial feeds for semi-intensive and hyper-intensive culture and four C/N ratios on water quality and performance of Litopenaeus vannamei juveniles at high density in biofloc-based, zero-exchange outdoor tanks. Aquaculture, 490: 194- 202. https://doi.org/10.1016/j.aquaculture.2018.02.028
Yao, W.; Zhang, C.; Li, X.; He, M.; Wang, J.; Leng, X. 2020. The replacement of fish meal with fermented soya bean meal or soya bean meal in the diet of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Research, 51(6): 2400-2409. https://doi.org/10.1111/are.14583
Yun, H.; Shahkar, E.; Katya, K.; Jang, I.K.; Kim, S.K., Bai, S.C. 2016. Effects of bioflocs on dietary protein requirement in juvenile whiteleg Shrimp, Litopenaeus vannamei. Aquaculture Research, 47(10): 3203-3214. https://doi.org/10.1111/are.12772
Zamora, R.; Hidalgo, F.J. 2016. The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products. Trends in Food Science & Technology, 54: 165-174. https://doi.org/10.1016/j.tifs.2016.06.006
Zar, J.H. 2010. Biostatistical Analysis. New Jersey: Prentice Hall.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Ítalo Felipe Mascena Braga, Alan Carvalho de Sousa Araújo, Victor Torres Rosas, José Maria Monserrat, Marcelo Borges Tesser, Wilson Wasielesky Junior, Geraldo Foes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.