Cultivo de alevines de tilapia en sistema biofloc bajo diferentes relaciones carbono/nitrógeno
DOI:
https://doi.org/10.20950/1678-2305.2017v43n3p399Keywords:
peces, calidad del agua, crecimiento, biofloc, proteínaAbstract
En la presente investigación se evaluó el efecto de la relación carbono/nitrógeno (C:N), la calidad del agua, la productividad y la composición proximal de alevines de Oreochromis niloticus durante 58 días de cultivo. El diseí±o experimental consistió de cuatro tratamientos: un sistema convencional (control) y tres sistemas biofloc (CN10, CN15 y CN20). Se utilizaron 12 unidades experimentales de 0.04 m3 con 30 peces (750 pez m-3) con peso promedio individual de 1.55 ± 0.01 g. Se constató la existencia de interacción entre los parámetros de calidad de agua del sistema biofloc y los parámetros productivos de los alevines de tilapia. El tratamiento CN10 presentó una baja producción de sólidos sedimentables: 38.61 ± 0.54 mL L-1 (p<0.05), hecho que contribuyó con el rápido crecimiento de los individuos (21.7 ± 2.18 g), alcanzando rendimientos finales promedios de 15.50 ± 0.81 kg m-3 (p<0.05). Es posible concluir que el cultivo de alevinos de O. niloticus en sistema biofloc, con una relación C:N de 10, presentó el mejor rendimiento de producción si comparado con los otros tratamientos (CN15 y CN20).
References
APHA (American Public Health Association) 2005 Standard methods for the examinations of the water and wastewater. 12ª ed. Washington, EE.UU.560p.
ASADUZZAMAN, M.; RAHMAN, M.M.; AZIM,M.E.; ASHRAFUL ISLAM, M.; WAHAB, M.A.; VERDEGEM, M.C.J.; VERRETH, J.A.J. 2010 Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, 306(1-4): 127í 136.
AVNIMELECH, Y. 2006 Bio-filters: the need for an new comprehensive approach. Aquacultural
engineering, 34(3): 172-178.
AVNIMELECH, Y. 2007 Feeding with microbial flocs by tilapia in minimal discharge bioflocs
technology ponds. Aquaculture, 264(1): 140-147.
AVNIMELECH, Y. 2009 Biofloc technology: A practical guide book. The World Aquaculture Society.
Baton Rouge. 182p.
AZIM, M; LITTLE, D. 2008 The biofloc technology (BFT) in indoor tanks: water quality, biofloc
composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture,
283(1): 29-35.
AZIM, M; LITTLE, D; BRON, J. 2008 Microbial protein production in activated suspension
tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresource
Technology, 99(9): 3590-3599.
BHUJEL, R.C. 2013 On-farm feed management practices for Nile tilapia (Oreochromis niloticus)
in Thailand. In: HASAN, M.R.; NEW, M.B.(eds). On-farm feeding and feed management in
aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 583. FAO, Rome. p.159í 189.
CALUMBY, J. A.; DOS SANTOS, M. M.; COELHO FILHO, P. A.; SOARES, E. C.; GENTELINI, A. L. 2014 Efeito da densidade no custo de produção de alevinos de tilápia em tanques-rede. Revista
Brasileira de Ciências Agrárias, 9(3): 459-464
COSTA, A; FRÓES, R. 2012 Produção de tilápias. Programa Rio Rural. Manual Técnico 31. 52p.
CRAB, R.; KOCHVA, M.; VERSTRAETE, W.; AVNIMELECH, Y. 2009 Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40(3): 105í 112.
DE SCHRYVER, P; CRAB, R; DEFOIRDT, T; BOON, N; VERSTRAETE, W. 2008 The basics of bio-flocs
technology: the added value for Aquaculture.Aquaculture, 277(3): 125-137.
DOS SANTOS, E; ALMEIDA, M; MOTA, S;DANTAS, M; MEDEIROS, M. 2009 Crescimento e qualidade dos alevinos de tilápia do Nilo produzidos em esgoto doméstico tratado. Revista Ciência Agronômica, 40(2): 232-239.
EBELING, J; TIMMONS, M; BISOGNI, J. 2006 Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammoniaí nitrogen in aquaculture systems. Aquaculture, 257(1): 346-358.
EKASARI, J.; RIVANDI, D.R.; FIRDAUSI, A.P.; SURAWIDJAJA, E.H.; ZAIRIN JR., M.; PETER BOSSIER; DE SCHRYVER, P. 2015 Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441(1): 72í 77.
EL-SAYED, A-F.M. 2006. Tilapia culture. Oxfordshire:CABI Publishing. 277 p.
EMERENCIANO, M.; GAXIOLA, G.; CUZON, G.2013 Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry. In: MATOVIC, M.D. (Ed.). Biomass
Now - Cultivation and Utilization. InTech, Manhattan. p.301-328.
FAO. FAO yearbook. 2016 Fishery and Aquaculture Statistics. 2014. Rome, Italy. 105p.
FELFí–LDY L., SZABO E.; TOTHL L. 1987 A biológiai vizminí¶sités. Vizügyi Hodrobiológia Vizdok,
Budapest, Hungary. 258p.
GOLTERMAN H.J.; CLYNO R.S.; OHNSTAD M.A. 1978 Methods for physical and chemical analysis
of freshwaters. Oxford. Blackwell Scientific Publications, London, England. 213p.
KOROLEFF F. 1976 Determination of nutrients. In: K. GRASSHOFF (Ed.). Methods of seawater analysis. Verlag Chemie Weinhein, New York. p.117-187.
LIM, C; YILDIRIM, M; LI, M; WELKER, T; KLESIUS, P. 2009 Influence of dietary levels of lipid and vitamin E on growth and resistance of Nile tilapia to Streptococcus iniae challenge. Aquaculture, 298(1): 76-82.
LING, J.; CHEN, S. 2005 Impact of organic carbon on nitrification performance of different biofilters. Aquacultural Engineering, 33(2): 150í 162.
LONG, L; YANG, J; LI, Y; GUAN, C; WU, F. 2015 Effect of biofloc technology on growth, digestive
enzyme activity, hematology, and immune response of genetically improved farmed tilapia
(Oreochromis niloticus). Aquaculture, 448(1): 135-141.
LUO, G; GAO, Q; WANG, C; LIU, W; SUN, D; LI, L; TAN, H. 2014 Growth, digestive activity, welfare,
and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus)
cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422-
423(1): 1-7.
MACKERETH F.J.H.; HERON J. Y TALLING J.F. 1978 Water analysis: some revised methods for limnologists. Oxford. Blackwell Scientific Publications, London, England. 120p.
MAGONDU, E. W.; VERDEGEM, M. C. J.; NYAKEYA, K.; MOKAYA, M. 2015 Production of aerobic, anaerobic and anoxic bioflocs from tilapia sludge. International Journal of Fisheries and Aquatic Studies, 2(5): 347-352.
MAGONDU, E.W.; CHARO-KARISA, H.; VERDEGEM, M.C.J. 2013 Effect of C/N ratio levels and stocking density of Labeo victorianus on pond environmental quality using maize flour as a carbon source. Aquaculture, 410í 411(1): 157í 163.
MARTÍNEZ-CÓRDOVA L.R; EMERENCIANO M.; MIRANDA-BAEZA A.; MARTÍNEZ-PORCHAS
A. 2015 Microbial-based systems for aquaculture of fish and shrimp: an updated review. Reviews
in Aquaculture, 7(2): 131-148.
PÉREZ-FUENTES, J; HERNÁNDEZ, M; PÉREZ, C; FOGEL, I. 2016 C: N ratios affect nitrogen removal
and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452(1): 247-251.
TRUNG, D. V.; DIU, N. T.; HAO, N. T.; GLENCROSS, B. 2011. Development of a nutritional model to
define the energy and protein requirements of tilapia, Oreochromis niloticus. Aquaculture, 320(1):
69-75.
WANG, G.; YU, E.; XIE, J.; YU, D.; LI, Z.; LUO, W.; QIU, L.; ZHENG, Z. 2015 Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture, 443(1): 98í 104.
WEBSTER, C.D.; LIM, C.E. 2002 (Ed.). Nutrient Requirements and Feeding of Finfish for quaculture. CABI Publishing, Oxford. 448p.
WEI, Y.; LIAO, S.A.; WANG, A.L. 2016 The effect of different carbon sources on the nutritional
composition, microbial community and structure of bioflocs. Aquaculture, 465(1): 88í 93.
XU, W. J.; MORRIS T.C; SAMOCHA T.M. 2016. Effects of C/N ratio on biofloc development,water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, highdensity, zero-exchange, outdoor tank system. Aquaculture, 453(1): 169í 175.