PROTEÍNA HIDROLISADA DE SUBPRODUTOS DE FRANGO E FÍGADO SUÍNO NA DIETA DO CAMARÃO-BRANCO-DO-PACÍFICO
DOI:
https://doi.org/10.20950/1678-2305/bip.2021.47.e657Palavras-chave:
Litopenaeus vannamei;, animal by-products;, digestive enzymes;, metagenomics;, nutrition.Resumo
Este estudo teve como objetivo avaliar a utilização de hidrolisado proteico de subproduto de aves e fígado de suíno na dieta do Litopenaeus vannamei e seu efeito na microbiota intestinal e na atividade enzimática do hepatopí¢ncreas. Camarões (10,94 ± 0,90 g) foram alimentados com dietas contendo 0%, 25%, 50%, 75% e 100% de substituição da farinha de subproduto de salmão pela proteína hidrolisada, em triplicata. A atividade enzimática do hepatopí¢ncreas e a composição da microbiota intestinal foram estudadas. Observou-se que a proteína hidrolisada da dieta alterou a atividade enzimática do camarão quando comparado ao grupo controle (p <0,05). A atividade da amilase aumentou diretamente com a porcentagem de reposição de proteínas na dieta. A análise metagenômica revelou mudança no bioma intestinal dos camarões. Os níveis crescentes de reposição proteica proporcionaram maior riqueza e diversidade no trato digestório nos tratamentos 75% e 100%, estando principalmente relacionadas a mudanças na abundí¢ncia das famílias Rhodobacteraceae e Flavobacteriaceae. Uma redução na abundí¢ncia da família Vibrionaceae foi observada com a inclusão do hidrolisado proteico na dieta. Esses resultados indicam que a proteína hidrolisada demonstrou alterações benéficas quando adicionada em concentrações de 25% na dieta do L. vannamei.
Referências
Alvarez-González, C.A. 2003. Actividad enzimática digestiva y evaluación de dietas para el destete de larvas de la cabrilla arenera Paralabrax maculatofasciatus (Percoidei:Serranidae), Baja California Sur, México, La paz. 166f (Doctoral thesis. Instituto Politécnico Nacional). Available at: <https://repositoriodigital.ipn.mx/handle/123456789/15177> Accessed: Feb. 12, 2019.
Caporaso, J.; Lauber, C.; Walters, W.; Berg-Lyons, D.; Lozupone, C.; Turnbaugh, P.; Fierer, N.; Knight, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. National Academy of Sciences, 108(2): 4516-4522. https://doi.org/10.1073/pnas.1000080107.
Castro, R.J.S.; Inacio, R.F.; Oliveira, A.L.R.; Sato, H.H. 2016. Statistical optimization of protein hydrolysis using mixture design: Development of efficient systems for suppression of lipid accumulation in 3T3-L1 adipocytes. Biocatalysis and Agricultural Biotechnology, 5(1): 17-23. https://doi.org/10.1016/j.bcab.2015.12.004.
Chakka, A.K.; Elias, M.; Jini, R.; Sakhare, P.Z.; Bhaskar, N. 2015. In-vitro antioxidant and antibacterial properties of fermentatively and enzymatically prepared chicken liver protein hydrolysates. Journal of Food Science and Technology, 52(12): 8059-8067. https://doi.org/10.1007/s13197-015-1920-2.
Chalamaiah, M.; Kumar, B.D.; Hemalatha, R.; Jyothirmayi, T. 2012. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications. Food Chemistry, 135(4): 3020-3038. https://doi.org/10.1016/j.foodchem.2012.06.100.
Cordova-Murueta, J.; García-Carreí±o, F. 2002. Nutritive value of squid and hydrolyzed protein supplement in shrimp feed. Aquaculture (Amsterdam, Netherlands), 210(4): 371-384. https://doi.org/10.1016/s0044-8486(02)00011-x.
Cordova-Murueta, J.H.; Garcia-Carreí±o, F.L.; Navarrete-Del-Toro, M. 2003. Digestive enzymes present in crustacean feces as a tool for biochemical, physiological, and ecological studies. Journal of Experimental Marine Biology and Ecology, 297(1): 43-56. https://doi.org/10.1016/S0022-0981(03)00355-1.
Erlanger, B.F.; Kokowsky, N.; Cohen, W. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics, 95(2): 271-278. https://doi.org/10.1016/0003-9861(61)90145-x.
Gamboa-Delgado, J.; Molina-Poveda, C.; Cahu, C. 2003. Digestive enzyme activity and food ingesta in juvenile shrimp Litopenaeus vannamei (Boone, 1931) as a function of body weight. Aquaculture Research, 34(15): 1403-1411. https://doi.org/10.1111/j.1365-2109.2003.00959.x.
Gao, S.; Pan, L.; Huang, F.; Song, M.; Tian, M.; Zhang, M. 2019. Metagenomic insights into the structure and function of intestinal microbiota of the farmed Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 499(2): 109-118. https://doi.org/10.1016/j.aquaculture.2018.09.026.
García-Carreí±o, F.L.; Dimes, L.E.; Haard, N.F. 1993. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analitycal Biochemistry, 214(1): 65-69. https://doi.org/10.1006/abio.1993.1457.
Geiger, R.; Fritz, H. 1988. Trypsin. In: Bergmeyer, H.U.; Grab, M. (eds). Methods of enzymatic analysis. New York: Academia Press, p. 119-129.
Hernández, C.; Olvera-Novoa, M.A.; Smith, D.M.; Hardy, R.W.; Gonzalez-Rodriguez, B. 2011. Enhancement of shrimp Litopenaeus vannamei diets based on terrestrial protein sources via the inclusion of tuna by-product protein hydrolysates. Aquaculture, 317(1): 117-123. https://doi.org/10.1016/j.aquaculture.2011.03.041.
Hernandez-Cortés, P.; Whitaker, J.R.; García-Carreí±o, F.L. 1997. Purification and characterization of chymotrypsin from Penaeus vannamei (Crustacean: Decapoda). Journal of Food Biochemistry, 21(1): 497-514. https://doi.org/10.1111/j.1745-4514.1997.tb00202.x.
Hjelm, M.; Riaza, A.; Formoso, F.; Melchiorsen, J.; Gram, L. 2004. Seasonal incidence of autochthonous antagonistic Roseobacter spp. and Vibrionaceae strains in a turbot larva (Scophthalmus maximus) rearing system. Applied and Environmental Microbiology, 70(12): 7288-7294. https://doi.org/10.1128/AEM.70.12.7288-7294.2004.
Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. 2017. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8(1): 8-24. https://doi.org/10.1186/s40104-017-0153-9.
Izadpanah, A.; Gallo, R.L. 2005. Antimicrobial peptides. Journal of the American Academy of Dermatology, 52(3): 381-390. https://doi.org/10.1016/j.jaad.2004.08.026.
Izvekova, G.I. 2006. Hydrolytic activity of enzymes produced by symbiotic microflora and its role in digestion processes of bream and its intestinal parasite Caryophyllaeus laticeps (Cestoda, Caryophyllidea). The Biological Bulletin, 33(3): 287-292. https://doi.org/10.1134/S1062359006030125.
Kar, N.; Ghosh, K. 2008. Enzyme producing bacteria in the gastrointestinal tracts of Labeo rohita (Hamilton) and Channa punctatus (Bloch). Turkish Journal of Fisheries and Aquatic Sciences, 8(1): 115-120.
Kelly, C.; Salinas, I. 2017. Under pressure: interactions between commensal microbiota and the teleost immune system. Frontiers in Immunology, 8(1): 1-8. https://doi.org/10.3389/fimmu.2017.00559.
Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushic, S.J.; Lei, X.G. 2018. Meeting global feed protein demand: challenge, opportunity, and strategy. Annual Review of Animal Biosciences, 7(2): 1-17. https://doi.org/10.1146/annurev-animal-030117-014838.
Kirchman, D.L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiology Ecology, 39(2): 91-100. https://doi.org/10.1111/j.1574-6941.2002.tb00910.x.
Kristinsson, H.G.; Rasco, B.A. 2000. Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1): 43-81. https://doi.org/10.1080/10408690091189266.
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature, 227(1): 680-685. https://doi.org/10.1038/227680a0.
Lemos, D.; Ezquerra, J.M.; Garcia-Carreí±o, F.L. 2000. Protein digestion in penaeid shrimp: digestive proteinases, proteinase inhibitors and feed digestibility. Aquaculture, 186(1): 89-105. https://doi.org/10.1016/S0044-8486(99)00371-3.
Li, E.; Chang, X.; Wang, X.; Wang, S.; Zhao, Q.; Zhang, M.; Quin, J.; Chen, L. 2018. Gut microbiota and its modulation for healthy farming of pacific white shrimp Litopenaeus vannamei. Reviews in Fisheries Science & Aquaculture, 26(3): 381-399. https://doi.org/10.1080/23308249.2018.1440530.
Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. 1951. Protein measurement with the Folin-Phenol reagent. The Journal of Biological Chemistry, 193(3): 265-276.
Marouax, S.; Louvard, D.; Barath, J. 1973. The aminopeptidase from hog intestinal brush border. Biochimica Et Biophysica Acta (BBA) - Enzymology, 321(1): 282-295. https://doi.org/10.1016/0005-2744(73)90083-1.
Martínez-Alvarez, O. 2013. Hormone-like peptides obtained by marine-protein hydrolysis and their bioactivities. In: Kim, S.D. (ed). Marine proteins and peptides: Biological activities and applications. Chichester: John Wiley & Sons. p. 351-367.
Mata, M.T.; Luza, M.F.; Riquelme, C.E. 2017. Production of diatom-bacteria biofilm isolated from Seriola lalandi cultures for aquaculture application. Aquaculture Research, 48(8): 4308-4320. https://doi.org/10.1111/are.13253.
Moullac, G.L.; Klein, B.; Sellos, D.; Wormhoudt, A.V. 1996. Adaptation of trypsin, chymotrypsin and α-amylase to casein level and protein source in Penaeus vannamei (Crustacea Decapoda). Journal of Experimental Marine Biology and Ecology, 208(1): 107-125. https://doi.org/10.1016/S0022-0981(96)02671-8.
Muhlia-Almazán, A.; García-Carreí±o, F.L. 2002. Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 133(3): 383-394. https://doi.org/10.1016/S1096-4959(02)00163-X.
Nasri, M. 2016. Protein hydrolysates and biopeptides: production, biological activities, and applications in foods and health benefits. A review. Advances in Food and Nutrition Research, 81(3): 109-159. https://doi.org/10.1016/bs.afnr.2016.10.003.
Nelson, D.L.; Cox, M.M. 2011. Princípios de bioquímica de Lehninger. 5. ed. Porto Alegre: Artmed, 1304 p.
Nguyen, H.T.M.; Pérez-Gálvez, R.; Bergé, J.P. 2012. Effect of diets containing tuna head hydrolysates on the survival and growth of shrimp Penaeus vannamei. Aquaculture, 324(1): 127-134. https://doi.org/10.1016/j.aquaculture.2011.11.014.
Niu, J.; Xie, J.; Guo, T.; Fang, H.; Zhang, Y.; Liao, S.; Xie, S.; Liu, Y.; Tian, L. 2019. Comparison and evaluation of four species of macro-algaes as dietary ingredients in Litopenaeus vannamei under normal rearing and WSSV challenge conditions: effect on growth, immune response, and intestinal microbiota. Frontiers in Physiology, 9(1): 1-15. https://doi.org/10.3389/fphys.2018.01880.
Osman, A.; Goda, H.A.; Abdel-Hamid, M.; Badran, S.M.; Otte, J. 2016. Antibacterial peptides generated by alcalase hydrolysis of goat whey. Lebensmittel-Wissenschaft + Technologie, 65(2): 480-486. https://doi.org/10.1016/j.lwt.2015.08.043.
Ramirez, R.F.; Dixon, B.A. 2003. Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma). Aquaculture, 227(3): 417-426. https://doi.org/10.1016/S0044-8486(03)00520-9.
Restrepo, L.; Bayote, B.; Arciniegas, S.; Bají±a, L.; Betancourt, L.; Panchana, F.; Munoz, A.R. 2018. PirVP genes causing AHPND identified in a new Vibrio species (Vibrio punensis) within the commensal Orientalis clade. Scientific Reports, 8(1): 1-14. https://doi.org/10.1038/s41598-018-30903-x.
Rick, W.; Stegbauer, H.P. 1974. Alpha amylase of reducing groups. In: Bergmeyer, H.V. (ed.). Methods of enzymatic analysis. New York: Academic Press, p. 885-890.
Rigottier-Gois, L. 2013. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. The ISME Journal, 7(2): 1256-1261. https://doi.org/10.1038/ismej.2013.80.
Rosas, C.; Cuzon, G.; Gaxiola, G.; Arena, L.; Lemaire, L.; Soyez, C.; Wormhoutdt, A.V. 2000. Influence of dietary carbohydrate on the metabolism of juvenile Litopenaeus stylirostris. Journal of Experimental Marine Biology and Ecology, 249(2): 181-198. https://doi.org/10.1016/s0022-0981(00)00184-2.
Saadi, S.; Saari, N.; Anwar, F.; Hamid, A.A.; Ghazali, H.M. 2015. Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnology Advances, 33(1): 80-116. https://doi.org/10.1016/j.biotechadv.2014.12.003.
Safari, R.; Motamedzadegan, A.; Ovissipour, M.; Regenstein, J.M.; Gildberg, A.; Rasco, B. 2012. Use of hydrolysates from Yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, 5(1): 73-79. https://doi.org/10.1007/s11947-009-0225-8.
Schippa, S.; Conte, M. 2014. Dysbiotic Events in Gut Microbiota: Impact on Human Health. Nutrients, 6(12): 5786-5805. https://doi.org/10.3390/nu6125786.
Sharifah, E.N.; Eguchi, M. 2011. The Phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. PLoS One, 6(10): e26756. https://doi.org/10.1371/journal.pone.0026756.
Silchenko, A.S.; Rasin, A.B.; Kusaykin, M.I.; Malyarenko, O.S.; Shevchenko, N.M.; Zueva, A.O.; Kalinovsky, A.I.; Zvyagintseva, T.N.; Ermakova, S.P. 2018. Modification of native fucoidan from Fucus evanescens by recombinant fucoidanase from marine bacteria Formosa algae. Carbohydrate Polymers, 193(1): 189-195. https://doi.org/10.1016/j.carbpol.2018.03.094.
Silchenko, A.S.; Ustyuzhanina, N.E.; Kusaykin, M.I.; Krylov, V.B.; Shashkov, A.S.; Dmitrenok, A.S.; Usoltseva, R.V.; Zuevab, A.O.; Nifantievc, N.E.; Zvyagintseva, T.N. 2016. Expression and biochemical characterization and substrate specificity of the fucoidanase from Formosa algae. Glycobiology, 27(3): 254-263. https://doi.org/10.1093/glycob/cww138.
Soares, M.; Rezende, P.C.; Corrêa, N.M.; Rocha, J.S.; Martins, M.A.; Andrade, T.C.; Fracalossi, D.M.; Vieira, F.N. 2020. Protein hydrolysates from poultry by-product and swine liver as an alternative dietary protein source for the Pacific white shrimp. Aquaculture Reports, 17(2): 100344. https://doi.org/10.1016/j.aqrep.2020.100344.
Sowmya, R.; Sachindra, N.M. 2015. Carotenoid production by Formosa sp. KMW, marine bacteria of Flavobacteriaceae family: Influence of culture conditions and nutrient composition. Biocatalysis and Agricultural Biotechnology, 4(4): 559-567. https://doi.org/10.1016/j.bcab.2015.08.018.
Thompson, F.L.; Iida, T.; Swings, J. 2004. Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews, 68(3): 403-431. https://doi.org/10.1128/MMBR.68.3.403-431.2004.
Tzuc, J.T.; Escalante, D.R.; Herrera, R.R.; Cortés, G.G.; Ortiz, M.L.A. 2014. Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei). SpringerPlus, 3(1): 280-290. https://doi.org/10.1186/2193-1801-3-280.
Verma, A.K.; Chatli, M.K.; Kumar, P.; Mehta, N. 2017. Antioxidant and antimicrobial activity of protein hydrolysate extracted from porcine liver. The Indian Journal of Animal Sciences, 87(2): 711-717.
Villamil, O.; Váquiro, H.; Solanilla, J.F. 2017. Fish viscera protein hydrolysates: production, potential applications and functional and bioactive properties. Food Chemistry, 224(1): 160-171. https://doi.org/10.1016/j.foodchem.2016.12.057.
Villasante, F.; Fernández, I.; Preciado, R.M.; Oliva, M. 1999. The activity of digestive enzymes during the molting stages of the arched swimming Callinectes arcuatus Ordway, 1863 (Crustacea: Decapoda: Portunidae). Bulletin of Marine Science, 65(3): 1-9.
Wald, M.; Schwarz, K.; Rehbein, H.; BuíŸmann, B.; Beermann, C. 2016. Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin. Food Chemistry, 205(1): 221-228. https://doi.org/10.1016/j.foodchem.2016.03.002.
Wang, Y.; Qian, P.Y. 2009. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One, 4(10): 1-9. https://doi.org/10.1371/journal.pone.0007401.
Wu, S.; Wang, G.; Angert, E.R.; Wang, W.; Li, W.; Zou, H. 2012. Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One, 7(2): 1-10. https://doi.org/10.1371/journal.pone.0030440.
Xiong, J.; Dai, W.; Li, C. 2016. Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Applied Microbiology and Biotechnology, 100(2): 47-54. https://doi.org/10.1007/s00253-016-7679-1.
Yamazaki, Y.; Meirelles, P.M.; Mino, S.; Suda, W.; Oshima, K.; Hattori, M.; Thompson, F.L.; Sakai, Y.; Sawabe, T.; Sawab, T. 2016. Individual Apostichopus japonicus fecal microbiome reveals a link with polyhydroxybutyrate producers in host growth gaps. Scientific Reports, 6(2): 21631. https://doi.org/10.1038/srep21631.
Zhang, M.; Sun, Y.; Chen, K.; Yu, N.; Zhou, Z.; Chen, L.; Du, Z.; Li, E. 2014. Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture, 434(4): 449-455. https://doi.org/10.1016/j.aquaculture.2014.09.008.
Zheng, K.; Liang, M.; Yao, H.; Wang, J.; Chang, Q. 2012. Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). Aquaculture Nutrition, 18(3): 297-303. https://doi.org/10.1111/j.1365-2095.2011.00896.x.
Zhou, XX.; Pan, YJ.; Wang, YB.; Li, WF. 2007. In vitro assessment of gastrointestinal viability of two photosynthetic bacteria, Rhodopseudomonas palustris and Rhodobacter sphaeroides. Journal of Zhejiang University. Science. B., 8(9): 686-692. https://doi.org/10.1631/jzus.2007.B0686.