Efeito das macroalgas Sargassum filipendula e Ascophyllum nodosum na resistência do camarão Litopenaeus vannamei ao choque hipotérmico

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.50.e854

Palavras-chave:

Immunologia, Microbiologia, Extratos de algas, Cultivo de camarão, Estresse térmico

Resumo

Este trabalho tinvestigou a resistência do camarão branco  L. vannamei ao choque hipotérmico (CH) quando tratado com extratos das espécies de algas  S. filipendula e A. nodosum, seja por banho de imersão para pós-larvas ou suplemento dietético para juvenis. Para análise da mortalidade pós-larval, pós-larvas de 17 dias de idade foram inseridas em água do mar com extrato de macroalgas nas concentrações de 20, 50, 100 e 200 mg L-1, seguido da aplicação de CH. Para análise da mortalidade juvenil, os camarões foram alimentados por 10 dias com a dieta controle ou tratamentos com extrato de macroalgas  (concentrações de 0,5%, 2,0% e 4,0%), seguido da aplicação de CH. Para análise hemato-imunológica e microbiológica, os camarões foram alimentados durante 15 dias com uma dieta composta por ração acrescida de 5% das duas espécies de macroalgas ou sem, novamente seguida de CH. As amostras foram coletadas antes do início do choque térmico, imediatamente após o choque (0 h), e 1 e 24 h após o retorno à temperatura inicial. O extrato aquoso das macroalgas  A. nodosum e S. filipendula nas concentrações de 100 mg L-1 e 200 mg L-1, respectivamente, melhora as taxas de sobrevivência de pós-larvas L. vannamei submetidas à CH. Para camarões juvenis, o CH causa imunodepressão significativa e reduz a comunidade bacteriana no intestino. A adição de macroalgas  à ração não aumentou a taxa de sobrevivência e não afetou a microbiota intestinal de L. vannamei. No caso dos parâmetros imunológicos, ambas as espécies afetam positivamente o título de aglutinação.

Referências

Bahar, B., O’Doherty, J. V., Vigors, S., & Sweeney, T. (2016). Activation of inflammatory immune gene cascades by lipopolysaccharide (LPS) in the porcine colonic tissue ex vivo model. Clinical & Experimental Immunology, 186(2), 266-276. https://doi.org/10.1111/cei.12839

Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Ciliberti, M. G., Albenzio, M., Annicchiarico, G., Sevi, A., Muscio, A., & Caroprese, M. (2015). Alterations in sheep peripheral blood mononuclear cell proliferation and cytokine release by polyunsaturated fatty acid supplementation in the diet under high ambient temperature. Journal of Dairy Science, 98(2), 872-879. https://doi.org/10.3168/jds.2014-8333

Cornish, M. L., & Garbary, D. J. (2010). Antioxidants from macroalgae: potential applications in human health and nutrition. Algae, 25(4), 155-171. https://doi.org/10.4490/algae.2010.25.4.155

Fan, D., Hodges, D. M., Zhang, J., Kirby, C. W., Ji, X., Locke, S. J., Critchley, A. T., & Prithiviraj, B. (2011). Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans againstoxidative and thermal stress. Food Chemistry, 124(1), 195-202. https://doi.org/10.1016/j.foodchem.2010.06.008

Food and Agriculture Organization (FAO) (2024a). FishStat –Global aquaculture production quantity (1950-2021). FAO. Retrieved from https://openknowledge.fao.org/items/06690fd0-d133-424c-9673-1849e414543d

Food and Agriculture Organization (FAO) (2024b). The state of world fisheries and aquaculture 2024. Blue Transformation in Action. FAO.

Gao, H., Kong, J., Li, Z., Xiao, G., & Meng, X. 2011. Quantitative analysis of temperature, salinity and pH on WSSV proliferation in Chinese shrimp Fenneropenaeus chinensis by real-time PCR. Aquaculture, 312(1-4), 26-31. https://doi.org/10.1016/j.aquaculture.2010.12.022

Gonçalves-Soares, D., Seiffert, W. Q., Schlindwein, A. D., Toledo-Silva, G., Zanette, J., Marques, M. R. F., & Bainy, A. C. D. (2012). Identification of differentially transcribed genes in shrimp Litopenaeus vannamei exposed to osmotic stress and challenged with WSSV virus. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 7(1), 73-81. https://doi.org/10.1016/j.cbd.2011.11.002

Gunalan, B., Soundarapandian, P., & Dinakaran, G. K. (2010). The effect of temperature and pH on WSSV infection in cultured marine shrimp Penaeus monodon (Fabricius). Middle-East Journal of Scientific Research, 5, 28-33

Gupta, S., & Abu-Ghannam, N. (2011). Bioactive potential and possible health effects of edible brown seaweeds. Elsevier Trends in Food Science & Technology, 22(6), 315-326. https://doi.org/10.1016/j.tifs.2011.03.011

Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23, 543-597. https://doi.org/10.1007/s10811-010-9632-5

Huang, X., Zhou, H., & Zhang, H. (2006). The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis. Fish & Shellfish Immunology, 20(5), 750-757. https://doi.org/10.1016/j.fsi.2005.09.008

Huynh, T. G., Yeh, S. T., Lin, Y. C., Shyu, J. F., Chen, L. L., & Chen, J. C. (2011). White shrimp Litopenaeus vannamei immersed in seawater containing Sargassum hemiphyllum var. chinense powder and its extract showed increased immunity and resistance against Vibrio alginolyticus and white spot syndrome virus. Fish & Shellfish Immunology, 31(2), 286-293. https://doi.org/10.1016/j.fsi.2011.05.014

Immanuel, G., Sivagnanavelmurugan, M., Marudhupandi, T., Radhakrishnan, S., & Palavesam, A. (2012). The effect of fucoidan from brown seaweed Sargassum wightii on WSSV resistance and immune activity in shrimp Penaeus monodon (Fab). Fish & Shellfish Immunology, 32(4), 551-564. https://doi.org/10.1016/j.fsi.2012.01.003

Kandasamy, S., Fan, D., Sangha, J. S., Khan, W., Evans, F., & Critchley, A. T. (2011). Tasco®, a product of Ascophyllum nodosum, imparts thermal stress tolerance in Caenorhabditis elegans. Marine Drugs, 9(11), 2256-2282. https://doi.org/10.3390/md9112256

Kandasamy, S., Khan, W., Evans, F., Critchley, A. T., & Prithiviraj, B. (2012). Tasco®: A product of Ascophyllum nodosum enhances immune response of Caenorhabditis elegans against Pseudomonas aeruginosa infection. Marine Drugs, 10(1), 84-105. https://doi.org/10.3390/md10010084

Kandasamy, S., Khan, W., Evans, F., Critchley, A. T., Zhang, J., Fitton, J. H., Stringer, D. N., Gardiner, V. A., & Prithiviraj, B. (2014). A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression. Food & Function, 5(2), 275-284. https://doi.org/10.1039/C3FO60050E

Kitikiew, S., Chen, J. C., Putra, D. F., Lin, Y. C., Yeh, S. T., & Liou, C. H. (2013). Fucoidan effectively provokes the innate immunity of white shrimp Litopenaeus vannamei and its resistance against experimental Vibrio alginolyticus infection. Fish & Shellfish Immunology, 34(1), 280-290. https://doi.org/10.1016/j.fsi.2012.11.016

Kuda, T., Tsunekawa, M., Hishi, T., & Araki, Y. (2005). Antioxidant properties of dried ‘kayamo-nori’, a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chemistry, 89(4), 617-622. https://doi.org/10.1016/j.foodchem.2004.03.020

Kumlu, M., Kumlu, M., & Türkmen, S. (2010). Combined effects of temperature and salinity on critical thermal minima of pacific white shrimp Litopenaeus vannamei (Crustacea: Penaeidae). Journal of Thermal Biology, 35(6), 302-304. https://doi.org/10.1016/j.jtherbio.2010.06.008

Le Moullac, G., & Haffner, P. (2000). Environmental factors affecting immune responses in Crustacea. Aquaculture, 191(1-3), 121-131. https://doi.org/10.1016/S0044-8486(00)00422-1

Lopes, M. M. D., de Miranda, M. R. A., Moura, C. F. H., & Eneas, J. (2012). Bioactive compounds and total antioxidant capacity of cashew apples (Anacardium occidentale L.) during the ripening of early dwarf cashew clones. Ciência e Agrotecnologia, 36(3), 325-332. https://doi.org/10.1590/S1413-70542012000300008

Maggioni, D. G., Andreatta, E. R., Hermes, E. M., & Barracco, M. A. (2004). Evaluation of some hemato-immunological parameters in female shrimp Litopenaeus vannamei submitted to unilateral eyestalk ablation in association with a diet supplemented with superdoses of ascorbic acid as a form of immune stimulation. Aquaculture, 241(1-4), 501-515. https://doi.org/10.1016/S0044-8486(03)00530-1

Marques, M. R. F., & Barracco, M. A. (2000). Lectins, as non-self recognition factors, in crustaceans. Aquaculture, 191(1-3), 23-44. https://doi.org/10.1016/S0044-8486(00)00417-8

Mattio, L., Anderson, R. J., & Bolton, J. J. (2015). A revision of the genus Sargassum (Fucales, Phaeophyceae) in South Africa. South African Journal of Botany, 98, 95-107. https://doi.org/10.1016/j.sajb.2015.02.008

Moser, J. R., Galván, D. A., Mendoza, F., Encinas, T., Coronado, D., Portillo, G., Risoleta, M., Magallón, F. J., & Hernández, L. (2012). Water temperature influences viral load and detection of White Spot Syndrome Virus (WSSV) in Litopenaeus vannamei and wild crustaceans. Aquaculture, 326-329, 9-14. https://doi.org/10.1016/j.aquaculture.2011.10.033

Mulyadi, I. N., & Wa, I. (2020). Efficacy of seaweed (Sargassum sp.) extract to prevent vibriosis in white shrimp (Litopenaeus vannamei) juvenile. International Journal of Zoological Research, 16(1), 1-11. https://doi.org/10.3923/ijzr.2020.1.11

Niu, J., Xie, J. J., Guo, T. Y., Fang, H. H., Zhang, Y. M., Liao, S. Y., Xie, S. W., Liu, Y. J., & Tian, L. X. (2019). Comparison and evaluation of four species of macroalgaes as dietary ingredients in Litopenaeus vannamei under normal rearing and WSSV challenge conditions: Effect on growth, immune response, and intestinal microbiota. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01880

O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P. G., Hughes, H., & Gardiner, G. E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8(7), 2038-2064. https://doi.org/10.3390/md8072038

Pal, A., Kamthania, M. C., & Kumar, A. (2014). Bioactive compounds and properties of seaweeds - A review. Open Access Library Journal, 1, e752. https://doi.org/10.4236/oalib.1100752

Peixoto Jr., S., Wasielesky, W. J., & Louzada, L. J. (2003). Comparative analysis of pink shrimp Farfantepenaeus paulensis and pacific white shrimp, Litopenaeus vannamei, culture in extreme southern Brazil. Journal of Applied Aquaculture, 14(1-2), 101-111. https://doi.org/10.1300/J028v14n01_07

Ponce-Pallafox, I., Martinez-Palacios, C. A., & Ross, L. G. (1997). The effect of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, 157(1-2), 107-115. https://doi.org/10.1016/S0044-8486(97)00148-8

Pontinha, V. A., Vieira, F. N., & Hayashi, L. 2018. Mortality of pacific white shrimp submitted to hypothermic and hyposalinic stress. Boletim do Instituto de Pesca, 44(2), e310. https://doi.org/10.20950/1678-2305.2018.310

Rezende, P. C., Miranda, C., Fracalossi, D. M., Hayashi, L., Seiffert, W. Q., Vieira, F. N., & Schleder, D. D. (2022). Brown seaweeds as a feed additive for Litopenaeus vannamei reared in a biofloc system improved resistance to thermal stress and white spot disease. Journal of Applied Phycology, 34, 2603-2614. https://doi.org/10.1007/s10811-022-02760-9

Rezende, P. C., Soares, M., Guimarães, A. M., Coelho, J. R., Seiffert, W. Q., Schleder, D. D., & Vieira, F. N. (2021). Brown seaweeds added in the diet improved the response to thermal shock and reduced Vibrio spp. in pacific white shrimp post-larvae reared in a biofloc system. Aquaculture Research, 52, 2852-2861. https://doi.org/10.1111/are.15136

Saker, K. E., Fike, J. H., Veit, H., & Ward, D. L. (2004). Brown seaweed (Tasco; TM) treated conserved forage enhances antioxidant status and immune function in heat-stressed wether lambs. Journal of Animal Physiology and Animal Nutrition, 88(3-4), 122-130. https://doi.org/10.1111/j.1439-0396.2003.00468.x

Salehpour, R., Biuki, N. A., Mohammadi, M., Dashtiannasab, A., & Ebrahimnejad, P. (2021). The dietary effect of fucoidan extracted from brown seaweed, Cystoseira trinodis (C. Agardh) on growth and disease resistance to WSSV in shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 119, 84-95. https://doi.org/10.1016/j.fsi.2021.09.005

Samocha, T. M., Lawrence, A. L., & Bray, W. A. (1993). Design and operation of an intensive nursery raceway system for penaeid shrimp. In: McVey, J. P. (Ed.), CRC Handbook of Mariculture (vol. 1, pp. 173-210). CRC Press.

Schleder, D. D., Blank, M., Peruch, L. G. B., Poli, M. A., Gonçalves, P., Rosa, K. V., Fracalossi, D. M., Vieira, F. N., Andreatta, E. R., & Hayashi, L. (2020). Impact of combinations of brown seaweeds on shrimp gut microbiota and response to thermal shock and white spot disease. Aquaculture, 519, 734779. https://doi.org/10.1016/j.aquaculture.2019.734779

Schleder, D. D., Blank, M., Peruch, L. G. B., Vieira, F. N., Andreatta, E. R., & Hayashi, L. (2017a). Thermal resistance of Pacific white shrimp fed Sargassum filipendula: A MALDI-TOF mass spectrometry approach. Aquaculture, 481, 103-111. https://doi.org/10.1016/j.aquaculture.2017.08.028

Schleder, D. D., Rosa, J. R., Guimarães, A. M., Ramlov, F., Maraschin, M., Seiffert, W. Q., Vieira, F. N., Hayashi, L., & Andreatta, E. R. (2017b). Brown seaweeds as feed additive for white-leg shrimp: effects on thermal stress resistance, midgut microbiology, and immunology. Journal of Applied Phycololy, 29, 2471-2477. https://doi.org/10.1007/s10811-017-1129-z

Smit, A. J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal of Applied Phycology, 16, 245-262. https://doi.org/10.1023/B:JAPH.0000047783.36600.ef

Söderhaäll, K., & Häll, L. (1984). Lipopolysaccharide-induced activation of prophenoloxidase activating system in crayfish haemocyte lysate. Biochimica et Biophysica Acta, 797(1), 99-104. https://doi.org/10.1016/0304-4165(84)90387-8

Stengel, D. B., Connan, S., & Popper, Z. A. (2011). Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnology Advances, 29(5), 483-501. https://doi.org/10.1016/j.biotechadv.2011.05.016

Thanigaivel, S., Chandrasekaran, N., Mukherjee, A., & Thomas, J. (2016). Seaweeds as an alternative therapeutic source for aquatic disease management. Aquaculture, 464, 529-536. https://doi.org/10.1016/j.aquaculture.2016.08.001

Thanigaivel, S., Vijayakumar, S., Mukherjee, A., Chandrasekaran, N., & Thomas, J. (2014). Antioxidant and antibacterial activity of Chaetomorpha antennina against shrimp pathogen Vibrio parahaemolyticus. Aquaculture, 433, 467-475. https://doi.org/10.1016/j.aquaculture.2014.07.003

Van Wyk, P., & Scarpa, J. (1999). Water quality requirements and management. In: Van Wyk, P., Davis- Hodgkins, M., Laramore, R., Main, K. L., Mountain, J., & Scarpa, J. (Eds.), Farming marine shrimp in recirculating freshwater systems (pp. 128-138). Florida Department of Agriculture and Consumer Services.

Xu, Z., Guan, W., Xie, D., Lu, W., Ren, X., Yuan, J., & Mao, L. (2019). Evaluation of immunological response in shrimp Penaeus vannamei submitted to low temperature and air exposure. Developmental and Comparative Immunology, 100, 103413. https://doi.org/10.1016/j.dci.2019.103413

Yan, P., Lin, C., He, M., Zhang, Z., Zhao, Q., & Li, E. (2022). Immune regulation mediated by JAK/STAT signaling pathway in hemocytes of Pacific white shrimps, Litopenaeus vannamei stimulated by lipopolysaccharide. Fish & Shellfish Immunology, 130, 141-154. https://doi.org/10.1016/j.fsi.2022.07.048

Yeh, S. T., Lee, C. S., & Chen, J. C. (2006). Administration of hotwater extract of brown seaweed Sargassum duplicatum via immersion and injection enhances the immune resistance of white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 20(3), 332-345. https://doi.org/10.1016/j.fsi.2005.05.008

Zhang, Z., Shi, X., Wu, Z., Wu, W., Zhao, Q., & Li, E. (2023). Macroalgae Improve the Growth and Physiological Health of White Shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 8829291. https://doi.org/10.1155/2023/8829291

Wang, H., Wan, X., Xie, G., Xuan, D., Wang, X., & Huang, J. (2020). Insights into the histopathology and microbiome of Pacific white shrimp, Penaeus vannamei, suffering from white feces syndrome. Aquaculture, 527, 735447.https://doi.org/10.1016/j.aquaculture.2020.735447

Downloads

Publicado

2024-11-22

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 > >>