Utilização do resí­­duo sólido de cultivo de camarão em sistema de biofloco para produção da microalga Navicula sp.

Autores

  • Jéssika Lima de ABREU Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco-UFRPE
  • Luis Otavio BRITO Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco-UFRPE
  • Laenne Barbara Silva de MORAES Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco-UFRPE
  • Débora Louise Barros SILVA Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco-UFRPE
  • Sílvia Mariana da Silva BARBOSA Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco- UFPE
  • Alfredo Olivera GÁLVEZ Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco-UFRPE http://orcid.org/0000-0001-5149-2605

DOI:

https://doi.org/10.20950/1678-2305.2016v42n4p780

Palavras-chave:

tratamento de efluente, microalga, crescimento

Resumo

O objetivo do trabalho foi avaliar o crescimento da microalga Navicula sp. utilizando resí­­duo sólido de um cultivo em sistema de bioflocos como meio de cultura em comparação ao meio Conway. Foram realizados dois experimentos, com e sem adição de metais traços, sendo que cada experimento teve cinco tratamentos com três repetições cada um: R0C100 (100% Conway); R25C75 (25% resí­­duo e 75% Conway); R50C50 (50% resí­­duo e 50% Conway), R75C25 (75% resí­­duo e 25% Conway) e R100C0 (100% resí­­duo). Os cultivos de alga foram realizados em erlenmeyers de 1 L durante 10 dias, com fotoperí­­odo integral e inóculo inicial de 5x104 cél.mL-1. Realizaram-se contagens diárias para acompanhamento da densidade celular máxima, tempo de duplicação e velocidade de crescimento. O pH e a temperatura foram mensurados no iní­­cio e no final dos experimentos. Para as análises estatí­­sticas, utilizaram-se os testes de Cochran, Shapiro Wilk, ANOVA e Tukey (P < 0,05). O pH e a temperatura mantiveram-se dentro dos padrões de cultivo nos dois experimentos. O meio de cultura com resí­­duo de cultivo de camarão em biofloco apresentou resultado semelhante ao do meio Conway e mostrou-se satisfatório para o desenvolvimento da microalga Navicula sp., ressaltando que a presença de metais traços favoreceu o crescimento da espécie.

Referências

ABDELAZIZ, A. E. M.; LEITE, G. B.; BELHAJ, M. A.; HALLENBECK, P. C. 2014 Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresource Technology, 157: 140-148.

APHA, AWWA; WEF. 1995 Standard Methods for the Examination of Water and Wastewater. 19ª ed. Washington: American Public Health Association, American Water Works Association, Water Environment Federation. 1594p.

BECKER, E W. 1995 Microalgae: biotechnology and microbiology. New York: Cambridge University Press, 293p.

BORGHETTI, I. A. 2009 Avaliação do crescimento da microalga Chlorella minutissima em meio de cultura com diferentes concentrações de manipueira, Curitiba Brasil. Curitiba. 103f. (Dissertação de Mestrado. Universidade Federal do Paraná, UFPR) Disponí­­vel em: <http://dspace.c3sl.ufpr.br/dspace/bitstream/handle/1884/20227/Dissertacao?sequence=1> Acesso em: 18 jan. 2016.

BOYD C. 1995 Bottom Soils, Sediment, and Pond Aquaculture. New York: Chapman and Hall. 348p.

BRITO, L. O.; SANTOS, I. G. S.; ABREU, J. L.; ARAí­Å¡JO, M. T.; SEVERI, W.; GÁLVEZ, A. O. 2015 Effect of addition of diatoms (Navicula spp.) and rotifers (Brachionus plicatilis) on growth and water quality of the Litopenaeus vannamei postlarvae reared in biofloc system. Aquaculture Research, 1-8.

CHEN, M.; TANG, H.; MA, H.; HOLLAND, T. C.; SIMON NG, K. Y.; SALLEY, S. O. 2011 Effect of nutrients on growth an lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102: 1649-1655.

COYLE, S. D.; BRIGHT, L. A.; WOOD, D. R.; NEAL, R. S. E TIDWELL, J. H. 2011 Performance of Pacific White Shrimp, Litopenaeus vannamei, Reared in Zero-Exchange Tank Systems Exposed to Different Light Sources and Intensities. Journal of the World Aquaculture Society, 42: 687-693.

CRAB, R.; AVNIMELECH, Y.; DEFOIRDT, T.; BOSSIER, P.; VERSTRAETE, W. 2007 Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270: 1-14.

CRAB, R.; DEFOIRDT, T.; BOSSIER, P.; VERSTRAETE, W. 2012 Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356-357: 351-356.

GOLDMAN, J. C.; GRAHAM, S. J. 1981 Inorganic Carbon Limitation and Chemical Composition of Two Freshwater Green Microalgae. Applied and Environmental Microbiology, 41 (1): 60-70.

GRESSLER, P. D. 2011 Avaliação da eficiência de Desmodesmus subspicatus (R. Chodat) E. Hegewald & A. Schmidt (CHLOROPHYCEAE) cultivada em fotobiorreator tubular com efluente da ETE-UNISC, visando biorremediação e obtenção de energia, Santa Cruz do Sul, Brasil. 120f. (Dissertação de Mestrado. UNISC, Tecnologia Ambiental). Disponí­­vel em: <http://www.unisc.br/portal/upload/com_arquivo/dissertacao_mta_final_pablogressler_2011.pdf> Acesso em: 05 jan. 2016.

GRIMA, E. 1999 Outdoor continuous culture Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. Journal of Biotechnology, 70: 271-288.

HARUN, R.; SINGH, M.; FORDE, G. M.; DANQUAH, M. K. 2010 Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14: 1037í 1047.

JHA, B.C. 1977 A note on the culture of the phytoplankter Navicula cuspidata (Kutz). Aquaculture, 10: 87-90.

KHATOON, H., S. BANERJEE, F.M. YUSOFF; SHARIFF, M. 2009 Evaluation of indigenous marine periphytic Amphora, Navicula and Cymbella grown on substrate as feed supplement in Penaeus monodon postlarvae hatchery systems. Aquaculture Nutrition, 15: 186-193.

KRUMMENAUER, D.; CAVALLI, R. O.; POERSCK, L. H.; WASIELESKY JR., W. 2011 Superintensive cultue of white shrimp, Litopenaeus vannamei, in a biofloco technology system in shouter Brazil at different stocking densities. Journal of World Aquaculture Society, 42: 726-733.

LAVENS, P.; SORGELOOS, P. 1996 Manual on the Production and Use of Live Food for Aquaculture. 361 ed. Rome: Food and Agriculture Organization of The United Nations, 295p.

LEE, B.D.; APEL, W.A.; WALTON, M.R. 2006 Calcium carbonate formation by Synemathococcus sp. strain PCC 8806 and Synemathococcus sp. strain PCC 8807. Bioresource Technology, 97: 2427-2434.

LOURENí­"¡O, S.O. 2006 Cultivo de microalgas marinhas: princí­­pios e aplicações. São Carlos: RiMa. 587p.

MAGNOTTI, C. C. F.; LOPES, R.; DERNER, R. E VINATEA, L. 2015 Using residual water from a marine shrimp farming BFT system. part I: nutrient removal and marine microalgae biomass production. Aquaculture Research, 1í 9.

MARINHO, Y. F.; BRITO, L. O.; SILVA, C. V. F.; SANTOS, I. G. S. E Gí­â‚¬LVEZ, A. O. 2014 Effect of addition of Navicula sp. on plankton composition and postlarvae growth of Litopenaeus vannamei reared in culture tanks with zero water exchange. Latin American Journal of Aquatic Research, 42: 427-437.

MISHRA, J. K.; SAMOCHA, T. M.; PATNAIK, S.; SPEED, M.; GANDY, R. L.; ALI, A. M. 2008 Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 38 (1): 2-15.

MIYAWAKI, B. 2014 Purificação de biogás através de cultivo de microalgas em resí­­duos agroindustriais, Curitiba, Paraná, Brasil. 137f (Dissertação (Mestrado. Universidade Federal do Paraná, UFPR). Disponí­­vel em: <http://www.pipe.ufpr.br/portal/defesas/dissertacao/265.pdf> Acesso em: 06 jan. 2016.

OSHE, S.; DERNER, R. B.; OZÓRIO, R. A.; BRAGA, M. V. C.; CUNHA, P.; LAMARCA, C. P.; SANTOS, M. E. MENDES, L. B. B. 2007 Revisão: sequestro de carbono realizado por microalgas e florestas e a capacidade de produção de lipí­­dios pelas microalgas. Insula í  Revista de Botí­¢nica, 36: 39í 73.

PADISÁK, J. 2004 Phytoplankton in: REYNOLDS, C.S.; O'SULLIVAN, P.E. (eds.) The Lakes Handbook. Oxford Blackwell E-Publishing, Oxford, p.251í 298.

RAWAT, I.;KUMAR, R.; MUTANDA, T.; BUX, F. 2011 Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88: 3411í 3424.

SAMOCHA, T. M.; S. PATNAIK, M. SPEED, ALI, A.; BURGER, J. M.; ALMEIDA, R. V.; AYUB, Z.; HARISANTO, M.; HOROWITZ, A. E BROCK, D. L. 2007 Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36: 184-191.

SILVA, D. A. 2014 Produção de biomassa de microalgas cultivadas em esgoto sanitário biodigerido visando a produção de biodiesel. Curitiba, Brasil. 105f. Dissertação de Mestrado. UFPR, Engenharia e Ciências dos Materiais). Disponí­­vel em: < http://www.pipe.ufpr.br/portal/defesas/dissertacao/266.pdf> Acesso em: 28 dez. 2015.

SILVA, K. R.; WASIELESKY JR.; ABREU, P. C. 2013 Nitrogen and Phosphorus Dynamics in the Biofloc Production of the Pacific White Shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44 (1): 30-41.

STEIN, J.R. 1973 Microalgae: biotechnology and microbiology. Culture, Methods and Growth Measurements. Cambridge University Press, London, 448p.

SUALI, E.; SARBATLY, R. 2012 Conversion of microalgae to biofuel. Renewable and Sustainable Energy Review, 16: 4316í  4342.

TACON, A. J. G.; CODY, J. J.; CONQUEST, L. D.; DIVAKARAN, S.; FORSTER, I. P.; DECAMP, O. E. 2002 Effect of culture system on the nutrition and growth performance of Pcific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition, 8: 121-131.

TAW, N. 2010 Biofloc technology expanding at white shrimp farms biofloc systems deliver hight productivity whith sustainability. Global Aquacultue Advocate, 2: 20-22.

TERMINI, I. D.; PRASSONE, A.; CATTANEO, C.; ROVATTI, M. 2011 On the nitrogen and phosphorus removal in algal photobioreactors. Ecological Engineering, 37: 976-980.

VALIENTE, E.F.; LEGANES, F. 1989 Regulatory effect of pH and incident irradiance on the levels of nitrogenase activity in cyanobacterium Nostoc UAM 205. Journal Plant Physiol, 135: 623-627.

VENDRUSCULO, J. B. G. 2009 Cultivo da microalga Scenedesmus quadricauda em efluentes de biodigestão de aves e suí­­nos. Goií­¢nia, Brasil. Góias. 45f. (Dissertação de Mestrado. UCG, Aquicultura Continental). Disponí­­vel em: < http://tede.biblioteca.ucg.br/tde_busca/arquivo.php?codArquivo=714> Acesso em: 19 dez. 2015.

VINATEA, L.; GÁLVEZ, A. O.; BROWDY, C. L.; STOKES, A.; VENERO, J.; HAVEMAN, J.; LEWIS, B. L.; LAWSON, A.; SHULER, A.; LEFFLER, J. W. 2010 Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: Interaction of water quality variables. Aquaculture Engineering, 42: 17-24.

VINATEA L. 2010 Qualidade de Água em Aquicultura: Princí­­pios e Práticas. 3ª ed. Florianópolis: Editora UFSC. 238p.

WALNE, P. 1974 Culture of bivalve mollusc, 50 years experience at Conway. Fishing New (books), Farham. 173 p.

WASIELESKY JR., W.; ATWOOD, H.; STOKES, A.; BROWDY, C. L. 2006 Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258: 396-403.

WEBB, J. M.; QUINTí, R.; PAPADIMITRIOU, S.; NORMAN, L.; RIGBY, M.; THOMAS, D. N.; L E VAY, L. 2012 Halophyte filter beds for treatment of saline wastewater from aquaculture. Water Research, 46 (16): 5102-5114.

Downloads

Publicado

2016-12-30

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)